j1|中科大何力新教授:当量子力学遇见AI——深度学习在超算平台上模拟量子多体问题( 二 )


j1|中科大何力新教授:当量子力学遇见AI——深度学习在超算平台上模拟量子多体问题
文章插图

何力新教授是中国科技大学物理系教授,1997年毕业于中国科技大学,2003年在美国罗格斯大学攻读博士,2003~2006年在美国国家再生能源实验室从事量子点的理论研究工作,并于2006年回国到中科大中科院量子信息中心进行研究工作,2011年获得杰青称号,2012年入选IOP Fellow,曾任科技部量子调控量子通信网络和量子仿真关键器件物理实现之首席科学家。
以下是演讲全文,AI科技评论进行了不改变原意的整理:


1

量子多体问题及其模型
j1|中科大何力新教授:当量子力学遇见AI——深度学习在超算平台上模拟量子多体问题
文章插图

研究量子多体问题具有极强的科学意义,可以从两个方面进行概括。首先在基础研究的角度上来看,量子多体问题的一个主要目标是发现和研究新的物质形态。我们可能对生活中常见的固体、液体和气体形式十分熟悉,但其实自然界中有很多其他物质形态,比如我们之前所说的超导和量子自旋液体等,这些新型的物理形态都具有各自的存在意义以及研究价值。
因此通过对新型物质形态的研究,我们便可以洞悉和总结物理世界的深层规律和法则。
另一项具有意义的方向是研究其应用价值。例如高温超导已经在能源、交通、精密测量和信息等领域有了广泛的应用。托克马克装置需要非常强的磁场进行物理约束,因此可以利用超导体产生超强的磁场。此外,拓扑序也可以进行拓扑量子计算。
j1|中科大何力新教授:当量子力学遇见AI——深度学习在超算平台上模拟量子多体问题
文章插图

在量子多体物理的模型中,有两个经典模型,即海森堡自旋模型,以及哈伯德电子模型。其中海森堡模型其本质是一个自旋模型,它描述了格点上两个自旋量子的相互作用。比如图中描述了两个最近邻的两个量子发生的交换作用J,如果J>0,则两个粒子倾向于自旋反平行。但是当J<0时,粒子倾向于自旋平行。
另一个经典模型是哈伯德模型,它描述了电子运动的模型。该模型描述了量子在格点上的运动,其中第一项表示的是电子从一个格点跳跃到另一个格点的过程。第二项,描述的是同一格点上电子的库仑排斥作用。
从局部的角度来看,这两种模型很容易理解。但是当粒子数逐渐增加的时候,系统将变得十分复杂,对其求解将会变得十分困难,算力需求也难以满足。
2

多体模型计算的困难性
j1|中科大何力新教授:当量子力学遇见AI——深度学习在超算平台上模拟量子多体问题
文章插图

计算困难的根本原因在于量子态的希尔伯特空间会随着粒子数量的增加而呈现指数级的增长。比如有N个1/2的自旋粒子,每个自旋有上下两个状态,那么态空间将达到2^N级别。因此如果我们需要对其进行严格求解,会遇到“指数墙”的问题,也就是算力需求巨大。目前我们只能实现大约40个格点的自旋系统的严格求解。
此外,我们也有一些其它近似方法,例如量子蒙特卡洛方法。但是它在计算费米系统(电子系统)和阻挫系统时会出现符号问题,即负几率问题。而动力学平均场方法,会对一维和二维等低维度的模型有计算问题。最后是密度矩阵重整化方法,只能计算一维和准一维的问题。
j1|中科大何力新教授:当量子力学遇见AI——深度学习在超算平台上模拟量子多体问题
文章插图