tube|这家DTC品牌收入同比大涨19%,做对了什么?( 二 )


Stitch Fix创始人兼首席执行官卡特里娜·莱克(Katrina Lake)在一次采访谈到,如果一个人没有收到他喜欢的东西,他就会停止使用Stitch Fix。对于品牌而言,没有任何选择,只能专注于数据,留住用户。
这意味着Stitch Fix必须通过不断收集、积累用户反馈的反馈数据,不断把算法模型调教好,让它更符合用户兴趣偏好,帮助用户感知他想要的东西。所以,品牌一直重视在机器算法学习上的投入和挖掘,该企业的董事会中技术人员占比35%,Netflix数据科学与工程副总裁埃里克·科尔森(Eric Colson)于2012年加入,并担任其首席算法官。
从人员占比和人才招聘不难看出,算法驱动着Stitch Fix的一举一动。可见,数据算法是其核心产品服务,是塑造品牌价值的核心。
那么,Stitch Fix是如何利用算法打造个性化服务优势的?
1.用户注册后沉淀基础数据
用户在网站成功注册账户后,需要填写Stitch Fix预先设定的问卷调查,填写完毕后会为每个用户创建一个人数据档案,用来记录该用户所有数据更新、变动,比如每次用户收到fix盒子后的反馈信息。
2.不断积累数据,优化算法模型
数据科学的重点在于数据量的积累,越多的数据可以勾勒出更全面的事实概貌,寻找到真实,同时也降低误差,提升算法推荐的准确性,减少用户流失率。
为了积累更多用户风格偏好的数据,Stitch Fix开发了一款基于IOS环境下的程序APP Style Shuffle,用户打开软件后会收到服饰搭配评分邀请,用户可以每天为一套服装搭配图片进行评分。据了解该品牌290万客户中有超过75%的用户使用了它,为公司提供了超过10亿的评分数据。
这款程序它不仅可以用来训练算法模型,了解用户的个人风格倾向,提高推荐准确性;同时还能吸引用户回到Stitch Fix,提升其个性化的产品能力,影响用户打开率和回购率。
3.以用户数据反馈,迭代个性化服务
与此同时,Stitch Fix不断提升其个性化服务的能力。比如,当用户退还为其搭配的衬衫后,设计造型师团队会根据用户反馈和数据结果,意识到用户希望衬衫可以掩盖腹部,胸部和袖口可以更宽松。在调整这些尺寸后,该团队自行设计自己的服装,以填补市场空缺,创造出可预见的高利润率和购买率的商品。
另外,品牌也会征求客户反馈意见并精确衡量销售服装各个维度,根据用户需求反馈,预测用户对品牌潮流的关注和喜好度,来扩大服装品牌类别。从而实现其大规模提供个性化样式的能力,将目标消费群体从富有人群扩展到中等水平的人群。
tube|这家DTC品牌收入同比大涨19%,做对了什么?
文章插图

品牌基于不断的数据积累、优化,再通过人脑+专业设计造型师,逐渐完善Stitch Fix的推荐准确性。这和奈飞的算法推荐有点类似,奈飞算法的优势在于对用户爱好理解得更深,结合用户喜好和内容种类,为内容和用户打标签,再根据不同用户喜欢的内容来进行匹配、引导,并且很大可能是为用户带来意料之外的惊喜,该品牌也是如此。
但不同的是,奈飞的商业模式是依靠小众、晦涩电影,电视节目的长尾效应来推动需求,这些电影和节目的成本很低,它一般不推荐大片,因为会员订阅费可能有限,但奈飞的推荐是很成功的,点播量均有提升。Stitch Fix是重视用户偏好,所有推荐的出发点在于伴随客户成长生命周期,服务客户,挖掘客户终身价值,实现客户”长尾效应“。
tube|这家DTC品牌收入同比大涨19%,做对了什么?
文章插图

在Stitch Fix的数字化、个性化产品服务能力下,该品牌在营销上也延用了这种风格,专注、极简和个性化。