G科亚医疗李育威:从临床需求出发,探索 ct( 三 )


在矛盾中,医疗AI有破局之效,既能实现准确诊断,又能提高治疗效率。总之,我们相信,医疗器械的AI化升级是未来非常确定的趋势,预计10年后能达到700多亿的规模。

借势而进:钻研心脑血管研究在医疗AI利好的情况下,心血管领域,是科亚医疗首先进入的领域。
为什么始于心脑血管,原因在于以下三点:
一、心脑血管是患病人数最多的疾病,属于我国的第一大致死病因。
2020年冠心病人数达1700万,预计2030年人数接近3000万。心血管领域的市场空间大,存在很多尚未满足的临床需求。
G科亚医疗李育威:从临床需求出发,探索 ct
文章插图
G科亚医疗李育威:从临床需求出发,探索 ct
文章插图


二、心脑血管诊疗技术在AI医疗器械中技术壁垒最高。对血管的多尺度精准重建、无创生理学功能评估和复杂病变分析等各方面技术要求极高,可谓难度高、竞争少。
第三个原因也是最重要的原因,我们相信,AI一定能为心脑血管领域带来革命性的变革。
所以我们从临床需求最旺盛、技术壁垒最高的心脑血管入手,凭借强大的底层技术钻研心脑血管疾病,也为未来横向拓展到其他疾病领域做好技术准备。
具体来看,应用于心脑血管的诊断技术,分为以下几个发展阶段:
最初,冠心病的诊断是对冠脉的解剖结构学进行诊断。如果被认为疑似冠心病,需要进一步做血管造影或有创检查,比如生理学标准FFR可以帮助我们指导病人血管的血运重建。
但是缺点也非常明显,有创技术无法对病人冠脉的全部疑点进行测量,而且价格昂贵,需要用压力导丝进行测量,约1万元一根。
G科亚医疗李育威:从临床需求出发,探索 ct
文章插图

2000年左右,斯坦福大学的一位教授基于流体动力学CFD的方法,结合FFR提出无创CT-FFR技术。
虽然这项技术能够得出精准的诊断结果,但是需更复杂模型、大量计算资源和更多计算时间。
而且,这种模型的模拟准确性需要保证各个环节执行缜密,任一环节的失误或不当,均可能导致准确性下降,甚至无法满足准确性要求。
G科亚医疗李育威:从临床需求出发,探索 ct
文章插图

后来,美国Heartflow公司推出了一款基于CFD的无创CT-FFR。
首先对冠脉病人做影像重建,后续按照CFD的经典处理分析流程,得到病人全树冠脉树,然后使用超级计算机建立合适的边界条件再进行FFR计算。
在临床试验指标上,Discover-flow为 84%,NXT为86%,计算时间8-12小时,价格在1500美元左右,目前为美国唯一一个获得FDA认证的技术。
同样,西门子CT-FFR也遵从类似的CFD处理流程,敏感性是79%,特异性89%,计算时间在40分钟以内。
不同的是它目前只作为科学研究使用,尚未正式落地。
G科亚医疗李育威:从临床需求出发,探索 ct
文章插图
G科亚医疗李育威:从临床需求出发,探索 ct
文章插图

对比来看,深脉分数DVFFR技术属于AI无创CT-FFR技术,基于自主研发的深度神经网络进行三维血管重建,结合病人的影像特征、血管特征、边界特征等进行深度神经网络的学习,全流程分析在10分钟内完成,可以得到全冠脉树任一点处的FFR值,十分高效准确。
目前,深脉分数临床试验的指标均已超过Heartflow各项指标,准确性超90%,敏感性94%,特异性88%,使我国无创CT-FFR在国际上保持领先水平。
G科亚医疗李育威:从临床需求出发,探索 ct
文章插图