G科亚医疗李育威:从临床需求出发,探索 ct( 二 )


G科亚医疗李育威:从临床需求出发,探索 ct
文章插图

在医疗领域,2010年,新一代人工智能技术在医疗影像领域出现。2018年,美国FDA批准了全球首个人工智能医疗产品IDx-DR,标志着AI技术通过了严苛的监管部门审核,正式进入大规模临床应用阶段。
2020年1月,科亚医疗的深脉分数产品正式获得国家药监局三类AI医疗器械证,通过我国监管管理最为严格的审核,成为国内第一个拿到监管认证的人工智能医疗产品,也成为我国人工智能医疗发展中的里程碑。
整个过程,我们有两个体会:一是不容易,二是幸运。
2016年,我们已开发出核心算法,产品开始进入临床试验。
但直到两年后,在2018年我们才进入药监局创新医疗器械特别审查通道,开展产品注册工作。至2020年初正式获批,落地时间周期大大超出了我们科研人员的意料。
但与此同时,我们有幸成为了填补国内医疗AI产品监管落地空白的第一家获批企业,从零开始和监管部门,尤其和药监局一起,探索如何落地我国医疗AI产品。
这让我们积累了深厚的医疗AI产品商业化经验,也让我们在后续的全线产品中很有信心。
从最开始围绕医疗AI产品商业化进行产品设计、数据及算法研究到临床应用,保证整个过程合规、可靠、安全地应用于医疗产品,既不容易,也很幸运。
刚才提到,新一代人工智能以神经网络为基础的深度学习为代表,本质是模拟人脑的神经网络架构,以实现“类人工智能”的机器学习技术。
G科亚医疗李育威:从临床需求出发,探索 ct
文章插图

人脑中的神经网络是一个非常复杂的组织,成人的大脑中有1000亿个神经元。神经元之间,以轴突连接并传递电信号。在深度神经网络中,则是用海量的人工节点来模拟人脑中的神经元,节点之间由不同权重的边互相连接,用来模拟电信号的传递。
所以,深度神经网络本质上是一个特征提取和模型优化的过程。
和传统方法相比,它最大的特点是能够通过数据来自发挖掘事物之间的内在联系,从而省去人工建模的过程。
这一点在医疗领域非常重要,因为影响病人疾病诊断和治疗决策的因素通常有很多种,而非单一因素,深度神经网络能够从大量的信息中学习并筛选有用的特征,从而实现精准诊疗。
从较低的层面看,AI能够快速分析和处理大量医疗数据,为医生重复性工作减负,提高医生工作效率;
从较高层面说,AI能够利用在大数据分析上的优势,整合多维医疗数据,深度挖掘医生发现不了的诊疗信息,为病患提供新的诊疗手段。
G科亚医疗李育威:从临床需求出发,探索 ct
文章插图

从临床诊疗流程上说,人工智能贯穿早期疾病筛查,中期精准诊断以及后期治疗及康复等各个流程,从而实现精准诊疗全流程的覆盖。
G科亚医疗李育威:从临床需求出发,探索 ct
文章插图

G科亚医疗李育威:从临床需求出发,探索 ct
文章插图

国家层面人工智能医疗政策、药监局及器审中心针对AI医疗器械审批法规
在医疗AI产品开发落地的历程中,我们深有体会。
一开始我国际的医疗AI发展无序,直到2015年,国家下放各种利好政策,明确人工智能产品的重要作用。
这正是我们科亚从2016年做起,到2018年落地更多产品线并不断提速的重要原因。
G科亚医疗李育威:从临床需求出发,探索 ct
文章插图


整个过程,我们总结出医疗布局中的一对矛盾:即优质资源分布不均与精准医疗需求增加的矛盾。