任务|有了“大数据”,还需“多任务”,谷歌AI大牛Quoc V. Le发现大模型零样本学习能力的关键

任务|有了“大数据”,还需“多任务”,谷歌AI大牛Quoc V. Le发现大模型零样本学习能力的关键
文章插图

编译 | 王晔
校对 | 青暮
谷歌研究科学家Quoc V. Le近期提出了一个1370亿参数语言模型FLAN,探讨了一种提高语言模型zero-shot学习能力的新方法。
研究表明,指令微调(instruction tuning)——在通过指令描述的任务集合上对语言模型进行微调,可以极大地提高未见过的任务的零样本场景下的性能
任务|有了“大数据”,还需“多任务”,谷歌AI大牛Quoc V. Le发现大模型零样本学习能力的关键
文章插图
论文链接:https://arxiv.org/pdf/2109.01652v1.pdf
我们采用一个1370亿参数量的预训练语言模型,通过自然语言指令模板对60多个NLP任务进行指令微调。我们把这个模型称为Finetuned LAnguage Net(FLAN),研究人员在未见过的任务类型上对这个指令微调过的模型进行了评估。
结果表明,FLAN极大地提高了其未调整的对应模型的性能,并且在我们评估的25个任务中,有19个任务超过了零样本设定下参数为1750亿的GPT-3。
在ANLI、RTE、BoolQ、AI2-ARC、OpenbookQA和StoryCloze上,FLAN甚至以很大的优势超过了小样本GPT-3。消融研究显示,任务数量和模型规模是指令微调成功的关键因素。
任务|有了“大数据”,还需“多任务”,谷歌AI大牛Quoc V. Le发现大模型零样本学习能力的关键
文章插图

图1:上面:指令微调和FLAN概述。指令微调是在以指令描述的任务集合上对预训练的语言模型进行微调。在推理中,我们对一个未见过的任务类型进行评估;例如,如果在指令微调期间没有学习过自然语言推理(NLI)任务,我们可以用NLI任务对模型进行评估。下面:与零样本 GPT-3 和小样本GPT-3相比,零样本FLAN在未见过的任务类型上的表现。


1

引言
规模化的语言模型(LM),如GPT-3,已经被证明可以很好地进行few-shot学习。然而,它们在zero-shot学习方面却不是很成功。例如,在阅读理解、回答问题和自然语言推理等任务上,GPT-3在零样本场景下的学习性能比小样本差很多。其中一个潜在原因是:如果没有小样本的示范,那么在与预训练数据的格式不同的指示上,模型就很难取得良好的表现。
本文中,我们探索了一种简单的方法来提高大型语言模型的零样本性能。我们利用了NLP任务可以通过自然语言指令来描述的直觉,比如 "这个电影评论是正面情绪的还是负面的?"或者 "把'你好吗'翻译成中文"。
我们采用了一个参数为1370亿的预训练语言模型,并对该模型进行指令微调——对60多个通过自然语言指令表达的NLP任务的集合进行微调。我们把这个模型称为Finetuned LAnguage Net(FLAN)。
为了评估FLAN在未见过的任务上的零样本性能,我们将NLP任务根据其任务类型分为几个群组,并对某个群组进行评估之前,在所有其他群组上对FLAN进行指令微调。
例如,如图1所示,为了评估FLAN执行自然语言推理的能力,我们先在一系列其他NLP任务上对模型进行指令微调,如常识推理、翻译和情感分析。由于这种设置确保了FLAN在指令微调中没有学习过任何自然语言推理任务,因此我们可以再评估其进行零样本自然语言推理的能力。
评估表明,FLAN极大地提高了基础1370亿参数模型在零样本场景下的性能。在我们评估的25个任务中的19个任务里,零样本场景下的FLAN也优于参数为1750亿参数的GPT-3,甚至在一些任务上,如ANLI、RTE、BoolQ、AI2-ARC、OpenbookQA和StoryCloze,也明显优于小样本GPT-3。在消融实验中,我们发现在指令微调中增加任务群的数量可以提高未学习任务的性能,而且只有在有足够的模型规模时,指令微调的优点才会显现。