金榕|?阿里达摩院金榕:从技术到科学,中国 AI 将何去何从?( 三 )


那时候,研究者非常强调理解,好的结果应该是来自于我们对它的深刻理解。研究者会非常在乎有没有好的理论基础,因为要对算法做好的分析,需要先对泛函分析、优化理论有深刻的理解,接着还要再做泛化理论…大概这几项都得非常好了,才可能在机器学习领域有发言权,否则连文章都看不懂。如果研究者自己要做一个大规模实验系统,特别是分布式的,还需要有工程的丰富经验,否则根本做不了,那时候没有太多现成的东西,更多只是理论,多数工程实现需要靠自己去跑。
但是深度学习时代,有人做出了非常好的框架,便利了所有的研究者,降低了门槛,这真是非常了不起的事情,促进了行业的快速发展。今天去做深度学习,有个好想法就可以干,只要写上几十行、甚至十几行代码就可以跑起来。成千上万人在实验各种各样的新项目,验证各种各样新想法,经常会冒出来非常让人惊喜的结果。
但我们可能需要意识到,时至今日,深度学习已遇到了很大的瓶颈。那些曾经帮助深度学习成功的好运气,那些无法理解的黑盒效应,今天已成为它进一步发展的桎梏。

3
下一代AI的三个可能方向
AI 的未来究竟在哪里?下一代 AI 将是什么?目前很难给出明确答案,但我认为,至少有三个方向值得重点探索和突破。
第一个方向是寻求对深度学习的根本理解,破除目前的黑盒状态,只有这样AI才有可能成为一门科学。具体来说,应该包括对以下关键问题的突破:
  • 对基于DNN函数空间的更全面刻画;
  • 对SGD(或更广义的一阶优化算法)的理解;
  • 重新考虑泛化理论的基础。
第二个方向是知识和数据的有机融合。
人类在做大量决定时,不仅使用数据,而且大量使用知识。如果我们的AI能够把知识结构有机融入,成为重要组成部分,AI势必有突破性的发展。研究者已经在做知识图谱等工作,但需要进一步解决知识和数据的有机结合,探索出可用的框架。之前曾有些创新性的尝试,比如Markov Logic,就是把逻辑和基础理论结合起来,形成了一些有趣的结构。
第三个重要方向是自监督学习和小样本学习。
我虽然列将这个列在第三,但却是目前值得重点推进的方向,它可以弥补AI和人类智能之间的差距。
今天我们经常听说 AI 在一些能力上可以超越人类,比如语音识别、图像识别,最近达摩院 AliceMind 在视觉问答上的得分也首次超过人类,但这并不意味着 AI 比人类更智能。谷歌2019年有篇论文 on the Measure of intelligence 非常有洞察力,核心观点是说,真正的智能不仅要具有高超的技能,更重要的是能否快速学习、快速适应或者快速通用?
按照这个观点,目前AI是远不如人类的,虽然它可能在一些方面的精度超越人类,但可用范围非常有限。这里的根本原因在于:人类只需要很小的学习成本就能快速达到结果,聪明的人更是如此——这也是我认为目前AI和人类的主要区别之一。
有一个很简单的事实证明 AI 不如人类智能,以翻译为例,现在好的翻译模型至少要亿级的数据。如果一本书大概是十几万字,AI大概要读上万本书。我们很难想象一个人为了学习一门语言需要读上万本书。
另外有意思的对比是神经网络结构和人脑。目前AI非常强调深度,神经网络经常几十层甚至上百层,但我们看人类,以视觉为例,视觉神经网络总共就四层,非常高效。而且人脑还非常低功耗,只有20瓦左右,但今天GPU基本都是数百瓦,差了一个数量级。著名的GPT-3跑一次,碳排放相当于一架747飞机从美国东海岸到西海岸往返三次。再看信息编码,人脑是以时间序列来编,AI是用张量和向量来表达。