金榕|?阿里达摩院金榕:从技术到科学,中国 AI 将何去何从?
文章插图
编辑 | 陈大鑫
本文为阿里巴巴达摩院副院长、原密歇根州立大学终身教授金榕亲作,旨在通过这篇文章,试图通过个人视角回顾AI的发展,审视我们当下所处的历史阶段,以及探索AI的未来究竟在哪里。
以下是部分观点:
2、以深度学习为代表的AI研究这几年取得了诸多令人赞叹的进步,但部分也是运气的结果,其真正原理迄今无人知晓。
3、在遇到瓶颈后,深度学习有三个可能突破方向:深度学习的根本理解、自监督学习和小样本学习、知识与数据的有机融合。
4、AI在当下最大的机会:用AI解决科学重要难题(AI for Science)。
如果从达特茅斯会议起算,AI 已经走过65年历程,尤其是近些年深度学习兴起后,AI迎来了空前未有的繁荣。不过,最近两年中国AI 热潮似乎有所回落,在理论突破和落地应用上都遇到了挑战,外界不乏批评质疑的声音,甚至连一些AI从业者也有些沮丧。
从90年代到美国卡耐基梅隆大学读博开始,我有幸成为一名AI研究者,见证了这个领域的一些起伏。通过这篇文章,我将试图通过个人视角回顾AI的发展,审视我们当下所处的历史阶段,以及探索AI的未来究竟在哪里。
虽然有人把当下归为第三波甚至是第四波AI浪潮,乐观地认为AI时代已经到来,但我的看法要谨慎一些:AI无疑具有巨大潜力,但就目前我们的能力,AI尚处于比较初级的阶段,是技术而非科学。这不仅是中国AI的问题,也是全球AI共同面临的难题。
这几年深度学习的快速发展,极大改变了AI行业的面貌,让AI成为公众日常使用的技术,甚至还出现了一些令公众惊奇的AI应用案例,让人误以为科幻电影即将变成现实。但实际上,技术发展需要长期积累,目前只是AI的初级阶段,AI时代才刚开始。
如果将AI时代和电气时代类比,今天我们的AI技术还是法拉第时代的电。法拉第通过发现电磁感应现象,从而研制出人类第一台交流电发电机原型,不可谓不伟大。法拉第这批先行者,实践经验丰富,通过大量观察和反复实验,手工做出了各种新产品,但他们只是拉开了电气时代的序幕。电气时代的真正大发展,很大程度上受益于电磁场理论的提出。麦克斯维尔把实践的经验变成科学的理论,提出和证明了具有跨时代意义的麦克斯维尔方程。
如果人们对电磁的理解停留在法拉第的层次,电气革命是不可能发生的。试想一下,如果刮风下雨打雷甚至连温度变化都会导致断电,电怎么可能变成一个普惠性的产品,怎么可能变成社会基础设施?又怎么可能出现各种各样的电气产品、电子产品、通讯产品,彻底改变我们的生活方式?
这也是AI目前面临的问题,局限于特定的场景、特定的数据。AI模型一旦走出实验室,受到现实世界的干扰和挑战就时常失效,鲁棒性不够;一旦换一个场景,我们就需要重新深度定制算法进行适配,费时费力,难以规模化推广,泛化能力较为有限。
这是因为今天的AI很大程度上是基于经验。AI工程师就像当年的法拉第,能够做出一些AI产品,但都是知其然,不知其所以然,还未能掌握其中的核心原理。
那为何 AI 迄今未能成为一门科学?
答案是,技术发展之缓慢远超我们的想象。回顾90年代至今这二十多年来,我们看到的更多是 AI 应用工程上的快速进步,核心技术和核心问题的突破相对有限。一些技术看起来是这几年兴起的,实际上早已存在。
- 酷睿处理器|关键数据出炉,京东比阿里差远了
- CPU|阿里反贪第一人蒋芳,入职23年将7名高层送入狱,连马云都可以查
- 阿里巴巴|社区团购是互联网巨头的宝地,美团拼多多发展强劲,阿里坐不住了
- 阿里巴巴|被苹果无辜“踢出局”,引发央视点名,国产制造该何去何从?
- 零售业|阿里再生独角兽,估值百亿美元,马云果然有远见
- MIUI|数字人民币APP正式上线,扯下了阿里的“遮羞布”
- meta|阿里云到底有多强大?一起来盘点一下它骄人的战绩
- 阿里巴巴|一块桌面版3070显卡的价格,就够买一个3070笔记本,还能剩点
- 政企|AWS、阿里云、Azure 云计算三巨头的“混战”
- 阿里巴巴|阿里员工黄土高原养猪记:给猪装上计步器,每天跑够2万步