知识|产品视角下的知识图谱构建流程与技术理解(13)
(2) 冷启动问题
对于新加入的用户或者物品,系统没有其历史交互信息,很难对其进行准确建模和推荐,相对应的推荐准确率和多样性也会大打折扣。
(3)可解释性
协同过滤算法侧重输入和输出,与神经网络模型一样类似于一个黑盒,计算模型提炼出的有效特征是什么很难说明,即决策的依据模糊,缺乏可解释性。
知识图谱可以针对这些问题进行改善,知识图谱可以用来表示实体之间的关系,如推荐系统中物品与物品、用户与物品、用户与用户之间的关系。
这些关系信息可以表示用户偏好与物品相似度等信息,将这些信息引入推荐系统中可以显著缓解推荐系统面临的冷启动与数据稀疏问题。
以阿里巴巴电商知识图谱为例,该知识图谱以商品为核心,以人、货、场为主要框架,共涉及9大类一级本体和27大类二级本体。一级本体分别为人、货、场、百科知识、行业竞争对手、品质、类目、资质和舆情。
人、货、场构成了商品信息流通的闭环,其他本体主要给予商品更丰富的信息描述。
阿里巴巴电商知识图谱的数据来源包含国内-国外数据、商业-国家数据、线上-线下等多源数据。目前有百亿级的节点和百亿级的关系边;主要靠机器维护,人工辅助。
有了这样规模庞大的知识图谱,可以对个性化推荐进行改进。
知识图谱可以增加更多的特征,提供了实体与实体之间更深层次、更长范围的关联,比如根据用户喜欢的物品进行推荐,有了知识图谱后,可以拓展该产品的更多属性,并且找到更多与其在属性上有关联的商品进行推荐。
同时,知识图谱还提供了与推荐实体的各种关联实体集合,可以通过语义来推荐相近的物品,比如买了羊肉卷推荐其关联商品火锅底料,或者买了手机推荐其图谱中的下位实体,如手机贴膜,耳机等。
最后,知识图谱是实体和关系的集合,且具有知识推理功能,因此推荐物品的可解释性也更好。
十、后记知识图谱是一门比较复杂且发展中的科学,目前还有很多不完善和不成熟的地方,每一个步骤也有太多的方法和外延,涉及到语义,逻辑,自然语言处理,机器学习、深度学习和图算法,整体是艰深并不是容易掌握的。
之前看了几本书,也听了几门课,看了不少技术帖,但脑子里还是迷迷糊糊,没有一个整体的框架。
写这篇文章的过程,也是一个不断查漏补缺,逻辑自洽的过程,写这篇文章就像完成了一篇综述,现在我对于整体的流程以及一些基础的概念有了更多的理解,输出倒逼输入,确实有道理。
然而对于产品经理来说,了解技术的底层和概况是为了更好的设计产品,我们更应该关注的是设计产品的目的是什么,面向的用户是哪些,能够提供怎样的价值和解决什么问题,产品的交互与易用性如何等等问题。
了解技术只是为了知道产品设计的边界在哪里,以及实现某些功能的路径和成本,一切还是为了产品。
虽然还未成熟,但知识图谱已经展示出巨大的价值,各种各样的应用也在不断落地。
相信在不远的将来,以知识图谱为基础的人工智能会更大范围、更深程度的改变世界。
作者:钟志伟,中国知网产品经理
本文由 @钟同学 原创发布于人人都是产品经理,未经作者许可,禁止转载。
【 知识|产品视角下的知识图谱构建流程与技术理解】题图来自 Pexels,基于CC0协议。
- |我依然是iPhone 6P的“钉子户”,尽管它成了古董产品
- |2022年换手机首选这款产品,性价比高运行速度快,用三四年没问题
- 基础层|B端决策类产品|关键信息密度提升设计
- 凌锋|追求更好用的轻薄本,还得看准Evo认证,这两款产品全都有
- |如何通过数据找到创业的“上帝视角”?
- 小米12|小米Civi美女产品经理实锤:最便宜小米12版本被砍!
- 关注手机产品的朋友们|神仙秒充?小米12prok50电竞版申请注册
- 这样的F1第一视角你看过吗?开着红牛RB7跑山
- 小米 Civi 产品经理证实:没有小米 12 青春版了
- 「墨刀」UOS 版上架统信应用商店:在线产品设计协作