谷歌|谷歌又买算法送手机了:最新方法让背景虚化细节到头发丝 真有单反的感觉!

当真是买算法送手机!
这不,谷歌又给“亲儿子”Pixel 6塞福利了,让手机抠图也能细节到头发丝 。
看这效果,原本模糊的头发轮廓,咻地一下,就变成了纤毫毕现的样子!
谷歌|谷歌又买算法送手机了:最新方法让背景虚化细节到头发丝 真有单反的感觉!
文章图片

连发丝之间的缝隙也能精准抠到 。
谷歌|谷歌又买算法送手机了:最新方法让背景虚化细节到头发丝 真有单反的感觉!
文章图片

这样一来,就避免了使用人像模式拍照时人物与虚化背景割裂的情况,让人物照片的纵深感更加逼真 。
四舍五入一下,这不就是手握单反拍照?(手动狗头)
Alpha遮罩+监督学习
在介绍最新的方法之前,先来了解一下过去手机的人像模式拍照到底是怎么实现的 。
传统方法是使用二进制将图像分割,然后对分离出的背景进行虚化,在视觉上产生一种纵深感,由此也就能更加突出人物主体了 。
谷歌|谷歌又买算法送手机了:最新方法让背景虚化细节到头发丝 真有单反的感觉!
文章图片

虽然带来的视觉效果非常明显,但是在细节上的表现还不够强大 。
由此,谷歌将常用于电影制作和摄影修图的Alpha遮罩搬到了手机上,提出了一个全新的神经网络,名叫“Portrait matting” 。
其中,主干网络是MobileNetV3 。
这是一个轻量级网络,特点是参数少、计算量小、推理时间短,在OCR、YOLO v3等任务上非常常见,具体结构长这样:
谷歌|谷歌又买算法送手机了:最新方法让背景虚化细节到头发丝 真有单反的感觉!
文章图片

在推理时,Portrait matting首先将RGB图像和低分辨率的Alpha遮罩作为输入,用MobileNetV3来预测分辨率更高的Alpha遮罩 。
然后再利用一个浅层网络和一系列残差块,来进一步提升Alpha遮罩的精细度 。
其中,这个浅层网络更加依赖于低层特征,由此可以得到高分辨率的结构特征,从而预测出每个像素的Alpha透明度 。
通过这种方式,模型能够细化初始输入时的Alpha遮罩,也就实现了如上细节到头发丝的抠图效果 。谷歌表示,神经网络Portrait matting可以使用Tensorflow Lite在Pixel 6 上运行 。
谷歌|谷歌又买算法送手机了:最新方法让背景虚化细节到头发丝 真有单反的感觉!
文章图片

此外,考虑到使用Alpha遮罩抠图时,背光太强往往会导致细节处理不好 。
谷歌使用了体积视频捕捉方案The Relightables来生成高质量的数据集 。
这是谷歌在2019年提出的一个系统,由一个球形笼子组成,装有331个可编程LED灯和大约100个用于捕获体积视频的摄像机 。
相比于一般的数据集,这种方法可以让人物主体的光照情况与背景相匹配,由此也就能呈现更为逼真的效果 。
谷歌|谷歌又买算法送手机了:最新方法让背景虚化细节到头发丝 真有单反的感觉!
文章图片

而且这种方法还能满足人像被放置在不同场景中时,光线变化的需求 。
谷歌|谷歌又买算法送手机了:最新方法让背景虚化细节到头发丝 真有单反的感觉!
文章图片

值得一提的,谷歌还在这一方法中使用了监督学习的策略 。
这是因为神经网络在抠图上的准确度和泛化能力还有待提升,而纯人工标注的工作量又太大了 。
所以,研究人员利用标记好的数据集来训练神经网络,从而大量数据中来提高模型泛化能力 。