张海天|这个新型AI电子器件没有硅!能模拟大脑神经元,还登上了Science
明敏 发自 凹非寺
量子位 | 公众号 QbitAI
【 张海天|这个新型AI电子器件没有硅!能模拟大脑神经元,还登上了Science】用钙钛矿取代硅研制电子器件,居然还能被用来完成AI计算???
众所周知,钙钛矿作为一种重要的材料,掺杂后主要用于生产SCI及博士论文(手动狗头)。
这次被用在开发新型AI电子器件上,还登上了Science,结果让人眼前一亮:
其心律识别任务的平均性能是传统硬件的5.1倍,并且还能灵活模拟动态网络、降低训练能耗。
用神经形态计算降能耗这项研究主要是通过向钙钛矿中掺入不同量的氢,来模拟人类神经元活动,从而完成不同机器学习任务。
这主要是基于钙钛矿自身的特性。
钙钛矿具备独特的晶体结构,很容易吸收氢离子。氢离子的加入可以改变材料的导电性,由此也就可以让材料制备成一种可切换状态的AI电子器件。
在这里研究人员使用了一种混合了钕和镍的钙钛矿材料。
通过向这一材料中混合不同含量的氢离子,来改变元件的不同状态,以此实现对大脑神经元活动的模拟。
文章插图
具体来看,在这种材料中加入大量氢离子后,它的电子最终会转移到镍原子上,导致原子电性发生改变,进而影响材料的导电性。
这时,施加外部电场可以控制氢的电子转移;再控制氢的含量,则可以让该电子元件在4种不同模式之间切换。
这4种模式分别是神经元模式、突触模式、电阻器模式和记忆电容器模式。
文章插图
其中,在不掺杂或少量掺杂氢离子的情况下,该材料处于电阻器模式,可以用来存储和处理信息。
在经过一个电子脉冲刺激后,该硬件可切换到记忆电容器模式。记忆电容器是模仿大脑结构神经网络系统的常见元件。
神经元模式会积累多个信号,此时元件电阻会发生明显变化,可以模拟人类大脑神经元被刺激时的活动状态。
突触模式则是根据神经元信号的强度来转换输入。
之所以会想到向钙钛矿这种材料中掺入氢,是因为研究人员想要利用神经拟态计算来构建这一新器件。
这是一种不同于普通冯·诺依曼计算体系的结构,它主要通过模拟人脑神经元和突触的活动来完成机器学习任务。
它最大的好处就是可以降低计算能耗,这对于解决未来更复杂、更大规模的AI计算具有重大意义。
由此一来,在进行AI计算时,便无需在硬件上激活、关闭不同的部分,只需控制硬件调整到相应模式即可。
研究人员还表示,这种电子器件的内部是亚稳定状态,可以保持6个月不用替换氢离子。
实验结果那么,这种硬件在不同神经网络中的表现如何?就成为了验证其性能的关键。
在这里,研究人员使用了两个神经网络作为测试。
第一个是一种储层计算网络,这是一种模拟人类大脑运作方式的机器学习系统。
它的运作过程是将信息输入到一个储层,其中的数据以各种方式连接在一起,然后这些数据再被送出储层进行分析。
由此一来,该网络也就无需预训练大量数据,仅对输出前的最后一层网络做梯度下降即可。
其中的关键储层,将分别用此次提出的新电子器件和传统硬件来完成运算。
文章插图
与传统理论储层和实验储层相比,这种新型储层(H-NNO)在MINIST(手写数字识别)、SpokenDight(音频数字识别)、ECGHeartBeat(心率识别)三个任务上都能使用更少的设备、实现相同的性能。
- 比亚迪|早报:全球半导体收入超5千亿美元 比亚迪发布全新主张
- 李文龙预赛前给省队教练发信息:紧张啊,老师
- 本文转自:中国科技网 关注 科技日报记者 张佳星记者7日获悉|5G、机器人、自动化……多项技术成果助力冬奥会医疗保障实现“无接触”
- 奥林巴斯挖藕新机规格曝光:每秒120张连拍4K60P内录
- 文学|著名女作家张洁去世:曾两度荣获茅盾文学奖
- 薛定谔方程|《张朝阳的物理课》探究谐振子模型的量子化问题
- 《张朝阳的物理课》探究谐振子模型的量子化问题
- vivo S12 Pro拍照实力如何?春节期间的实拍样张来了
- 恶果|“踩点”交出数据后,张忠谋开始后悔:美国此举会酿成恶果
- 前国脚高红:夺冠是中国足球的及时雨 很荣幸执教过张琳艳等人