为全身Avatar而生,Facebook研发灵活的6D姿态电磁追踪方案( 二 )
文章图片
实验发现 , EM-POSE可准确重建弓步、下蹲等容易产生遮挡的复杂下半身运动 , 同时也可以忠实还原交叉手臂的动作 。 此外 , 开合跳、走路等动态动作也可以准确呈现 。 12颗传感器的方案误差最多仅31.8毫米、13.3° , 而6颗传感器的方案 , 误差可控制在35.4毫米、14.9°以下 。
实际上 , 基于电磁传感的定位方案已经不是新鲜技术 , 上世纪60年代的时候 , 就已经在军事领域得到应用 。 而且 , 目前市面上也已经有许多基于电磁传感的定位系统 , 它们具备不同的追踪范围、采样率/刷新率、硬件外观等特征 。
文章图片
而对于C端VR场景 , 科研人员认为现有技术还无法满足需求 , 因为传感器体积过大 , 或是需要连接线 , 限制用户移动 。 除此之外 , 姿态传感器还需要足够方便穿脱 , 可长时间佩戴 , 才能更吸引C端消费者 。 相比之下 , EM-POSE支持无线传感 , 而且通过优化 , 还有望将传感器从12颗降低至6颗 。 据悉 , 为了用最少的传感器来完成全身姿态追踪 , 该团队研发了一个两部分解决方案 , 第一步是根据培训数据来推测姿态 , 接着再用算法来优化准确性 。
文章图片
在训练姿态学习算法过程中 , 科研人员也遇到了一些难题 , 比如:1 , 电磁传感的准确性会根据距离加长而降低 , 因此不同姿态的追踪准确性也不同;2 , 如何减少传感器 , 避免在使用者身上穿戴过多设备 , 因此需要通过算法来推断无法追踪到的关节运动;3 , 预测传感器和皮肤之间的距离 , 可稳定计算误差 。
文章图片
另外 , 6个传感器的姿态识别方案缺少约束;电磁传感的准确性受距离影响 , 因此对不同姿态的识别准确性也有差异;识别皮肤与传感器之间细微距离的准确性要高 , 以避免传感器滑动产生误差 。
为了优化算法 , 科研人员采用了学习式迭代拟合法中的LGD框架来训练 。 基于LGD框架训练的算法准确性更高 , 而且速度比纯优化的模型要快几个数量级 。 采用LGD学习框架 , 通过神经网络来学习梯度的动态变化 , 以加速姿态预测的过程 。
总之 , EM-POSE方案将电磁基站和传感器固定在VR用户身上 , 因此如果配合Quest等一体机使用时 , 应用场景将更灵活 , 不管是玩游戏还是社交 , 你不会再受到空间或连接线限制 , 而这也是未来C端应用的需求之一 。 参考:ETH
- 华为|别不信!魅族如今处境,雷军早有预料,小米也早已体验
- m都是大片!微软 Skype 支持将必应 Bing 图片设为通话虚拟背景
- 华为|问界M5风光无限,赛力斯SF5暗自神伤,华为或许低估了造车这事?
- 任正非|任正非与孟晚舟的姓氏为什么不一样?
- 华为鸿蒙系统|华为偷偷上架新机,鸿蒙系统+5000mAh大电池,仅售1399元
- 为了你的iPhone能磁吸充电,苹果又花了5亿买材料
- 5G|关于5G,华为赢了
- 华为|华为任正非最新信件曝光:春天很快就会到来!
- 5G|华为利用5G毫米波发现园区入侵者,这让美国5G联盟情何以堪
- ios|华为迎来新里程碑,在新领域旗开得胜!