业务|数据产品经理如何快速了解业务( 三 )


用户行为为血,流转在功能环节里,每次行为触发都预示着对功能或内容的喜好与“厌恶”。还以电商为例,比如从商品列表页到详情页这个过程实际是不断往复的操作,从感兴趣->点击->退出->感兴趣->点击->退出。通过用户实际点击行为和商品信息,来掌握每块功能下的埋点信息。在空余之时可以对其加以分析不断完善数据产品。
3)后台业务
后台业务为养料,页面上所有的商品信息都需要依赖业务后台进行支撑,通过后台可以获取到数据产品中所依赖的部分分析维度。若想让数据产品直接作用于业务,那么对接业务后台将会是一个重要输出方向。
对用户使用流程的了解是未来与业务同学交流时重要依赖的内容。可以让我们熟知数据获取来源,了解数据产品的支撑边界,补全业务数据需求,甚至可以指导业务的发展迭代。
2. 商业模式了解商业模式首先要建立行业的认知,可通过PEST方法分别从政治、经济、社会以及技术环境进行综合分析。了解公司当前所处在什么样的产业生命周期内,行业有哪些竞争对手,各自发展水平如何。通过对行业的了解为业务发展提供可参考的方向。即便在同一个行业各家公司的商业模式也都在“标新立异”。
比如电商行业的三巨头:淘宝、京东、拼多多。
淘宝:品类繁多,依托平台商家对用户,收取商家费用;
京东:物流服务、品质保障,自营商品直接对用户,赚差价;
拼多多:社交电商,薄利多销,依托平台商家对用户,收取商家费用。
对行业以及商业模式的熟悉,不仅能更深入的理解业务。比如评估业务需求是否与行业背驰、如何拥抱公司发展带给数据产品的挑战等,也可以尝试引入跨界的解决方案实现数据产品赋能的效果。
3. 团队架构快速熟知组织架构和对接人即是快速了解业务的一种途径。同时也能与业务联动高效推广数据产品的服务能力。首先需要先了解公司内部每个角色大体工作内容及重点负责人,包括产品、运营、渠道、测试、营销、商业化等。
梳理各角色对数据依赖的侧重点,针对性的进行功能设计及指标制定。可以从现有产品中导出近3个月的访问记录,根据所在部门来进行相关角色的划分。
4. 指标体系指标体系是业务流程的量化,从不同维度梳理业务,把指标有机的组织起来,便于统一管理和解读。比如:同样是新增用户,有人定义是某日新激活的用户为新用户;有人则定义为某日激活且有关键行为的用户为新用户。如果双方沟通开始就没有明确那即浪费时间更容易出错。
如果公司有现成的指标管理系统,根据业务轻重缓急逐一熟悉即可。倘若还没有,也可通过如下顺序简单梳理慢慢掌握:

  • 指标分级:一级指标为业务kpi指标、二级指标为日常业务发展的重点指标、三级指标为业务日常使用的关键指标
  • 流程映射:基于上文对数据产品、用户流程及商业模式等的了解,根据不同等级的指标,将其映射至各个环节,建立指标“框架“
  • 梳理维度:整理指标涉及的分类维度,便可获得枝繁叶茂的指标体系。
04 结语面对全新的工作内容即是对自己的一个挑战,也是对自己的一次成长。有人习惯从大局到细节,也有人只关注产品本身。方法不是一成不变,更重要的是找寻适合自己的。上述内容对于有经验的同学,可以结合自身着重关注某几个方面。如果新入行的同学前期就需要做些功课啦,比如:整理同行业招聘网站任职要求,提炼通用能力,多多学习。多参加沙龙分享与行业前辈交流。关注“一个数据人的自留地”的文章、课程选择某个方向进行深入,都是不错的选择。