数据源|重构数据根基,打造数据闭环( 三 )


数据是一个基础,那么我们该如何收集数据?
(4)反馈(Feedback)
在这一步上,我们要重视数据源,积累数据资产。其实也就是要遵循一个大的原则:大、全、细、时。

  • 大:宏观的“大”,我们收集的数据量尽量越多越好。
  • 全:全域数据源,不管是线上的还是线下的,我们都尽量收集进来。
  • 细:多维度,进行全域数据收集,做到细致。
  • 时:时效性,我们所收集的数据要尽量跟当下时间比较接近,如果数据滞后了,可能会影响到效果。
我们去搭建一个更好的数据源,做一个基础,其实就是一个反馈的过程。就像去年武汉疫情,当时是做的四个小时系统就能把数据报上去,这些数据依赖于人进行相对应的操作,如果人没有去执行这步操作,就会产生数据滞后的情况。
数据源|重构数据根基,打造数据闭环
文章插图

但丁香园、腾讯在那时,也会出一些相应的疫情数据报告,这点其实是做得比较好的,但这些都需要依赖于政府的数据更新。
在我们各行各业中,数据的收集是一个基础,打好这个基础是非常有必要的。
那么,该如何去搜集数据,这里有些常用的数据采集方式。
① 全埋点
这种方式集成 SDK,可以一键完成数据采集,但只能采集前端数据,采集范围有限。
② 可视化全埋点
这种方式可以用可视化的方法灵活自定义全埋点,它消除了技术门槛,让非开发人员可以直接“埋点”。
③ 代码埋点
这种方式支持 Java/Python/PHP 等各类开源 SDK,可以打通行为数据和业务交易数据,分析更有深度。
④ 导入工具
通过导入工具,可以完成批量的历史数据、三方数据接入,降低 ETL 工作量,快速接入多种数据源。
这些都是我们的收集数据的手段,最终目的都是为了建立一个更好的数据基础。
除了把这些数据收集起来,我们还需要打通它。不同的终端、不同的场景如何用ID-Mapping以及不同的方式把它们连接到一起,这样,我们就有了建立全域数据经营的可能性。
数据源|重构数据根基,打造数据闭环
文章插图

而在背后,就是对数据模型的打造。Event+User+Item 模型是我一路延续过来的一个核心模型。其实只要通过这个模型,我们就可以把跟用户行为相关的操作都可以很好地联络管理起来。
数据源|重构数据根基,打造数据闭环
文章插图

有了这些数据,那我们再去做产品迭代的时候就不一样了。如果没有数据,那我们可能就是有了点子去做产品,然后再次不断的尝试的过程。但有了数据之后,我们就可以让整个迭代的过程变成一个假设检验的科学实验过程。
数据源|重构数据根基,打造数据闭环
文章插图

这是《精益创业》那本书里面提到的一个理念,就是我们有了点子,然后我们在做产品的过程中,要制定数据采集的方式以及衡量指标,这样你就有了一个预估的数据表现,等到产品上线后,你就可以拿到这些数据,并且结合内外部数据进行评估。
综合来说,最终做成这个决策,我们是靠数据驱动,让整个产品迭代的过程,变成一个科学实验的过程,而不是靠灵光一现。
当时在百度知道做问题推荐时,关于推荐的引导语该怎么写?我们当时是有两种思路,一个是“等待你来回答”,一个是“我来帮您解答”。
但这个文字你是无法直观地给出答案,但是通过数据可以表现出来。因此,我们在测试中,发现“等待你来回答”比“我来帮您解答”要高出50%的效果。其实你也说不明白这是为什么,但这就是数据的力量。