抛物线性质
1.焦半径公式:(y2=2px(p>0))|MF|=2x0M(x0,y0)为抛物线上任意一点的坐标;
2.|AB|=cos2θ(x2=2py(p>0))(通径是最短的焦点弦) 。
补充
1.焦半径公式:(y2=2px(p>0))|MF|=2x0M(x0,y0)为抛物线上任意一点的坐标
2.通径|AB|=2p
3.焦点弦
(1)、|AB|=p+x1+x2
(2)、|AB|=2psin2θ2pP(y2=2px(p>0))
(3)、|AB|=cos2θ(x2=2py(p>0))(通径是最短的焦点弦)
(4)、焦点弦的端点坐标A(x1,y1),B(x2,y2),则有x1x2=,y1y2=-p24p2
(5)、n=1+cosθ,m=1?cosθm+n=p
抛物线
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线 。其中定点叫抛物线的焦点,定直线叫抛物线的准线 。
抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹 。它有许多表示方法,例如参数表示,标准方程表示等等 。它在几何光学和力学中有重要的用处 。抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线 。抛物线在合适的坐标变换下,也可看成二次函数图像 。
一般式:y=aX2+bX+c(a、b、c为常数,a≠0)
顶点式:y=a(X-h)2+k(a、h、k为常数,a≠0)
交点式(两根式):y=a(x-x1)(x-x2) (a≠0)
其中抛物线y=aX2+bX+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程aX2+bX+c=0的两实数根 。
文章插图
抛物线四种方程的异同
共同点
①原点在抛物线上,离心率e均为1 ②对称轴为坐标轴;
③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4 。
不同点
①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;
②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号 。
扩展
A(x1,y1),B(x2,y2),A,B在抛物线y2=2px上,则有:
【抛物线四种方程的异同共同点 抛物线通径公式】① 直线AB过焦点时,x1x2 = p2/4 , y1y2 = -p2;
(当A,B在抛物线x2=2py上时,则有x1x2 = -p2 , y1y2 = p2/4 , 要在直线过焦点时才能成立)
② 焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)2]=(x1+x2)/2+P;
③ (1/|FA|)+(1/|FB|)= 2/P;(其中长的一条长度为P/(1-cosθ),短的一条长度为P/(1+cosθ))
④若OA垂直OB则AB过定点M(2P,0);
⑤焦半径:|FP|=x+p/2 (抛物线上一点P到焦点F的距离等于P到准线L的距离);
⑥弦长公式:AB=√(1+k2)*│x1-x2│;
⑦△=b2-4ac;
⑴△=b2-4ac>0有两个实数根;
⑵△=b2-4ac=0有两个一样的实数根;
⑶△=b2-4ac<0没实数根 。
⑧由抛物线焦点到其切线的垂线的距离是焦点到切点的距离与到顶点距离的比例中项;
⑨标准形式的抛物线在(x0,y0 )点的切线是:yy0=p(x+x0)
(注:圆锥曲线切线方程中x2=x*x0 , y2 =y*y0 , x=(x+x0)/2 , y=(y+y0)/2 )
- 切线方程的四种表示方式 切线方程三个表达式是什么
- 九价疫苗在预防前面四种HPV感染的基础上 什么是九价疫苗
- 铜和稀硝酸在常温也可直接反应放出无色的NO 铜和稀硝酸反应方程式是什么
- 二氧化碳与氢氧化钠反应方程式 二氧化碳和氢氧化钠反应方程式
- 拉链下滑可能是拉头松了,可以用以下四种方法解决 拉链下滑如何解决
- 食盐化学式NaCl是什么 食盐的化学式是什么
- 氢氧化钠与稀盐酸反应化学方程式 氢氧化钠和稀盐酸的反应
- 接近黑色的染发颜色 这四种颜色美哭你
- 秋季牛仔衣的四种好看穿搭示范 牛仔外套最佳搭配图片
- Chemical Equation 化学方程式 化学方程式的意义是什么