电解液|我科研人员开发高压电解液构筑高能量密度锂电池体系

3月31日 , 采访人员从中国科学院青岛生物能源与过程研究所获悉 , 该研究所先进储能材料与技术研究组在武建飞研究员的带领下 , 近期在高电压电解液体系开发应用方面取得关键性进展 , 相关研究成果近日发表于国际期刊《化学工程杂志》 。
据介绍 , 当前锂离子电池由于其出色的电化学性能已经广泛应用于电动汽车 , 正极材料是影响锂离子电池性能的关键因素之一 , 使用高比能正极材料(如NCM811)以及提高电池工作电压(>4.2V)是获得更高能量密度的最有效途径 。 然而 , 传统的碳酸酯基电解液无法适配高压电池体系 , 同时三元正极材料在高电压下发生各种副反应 , 最终导致体系劣化、容量衰减 。
【电解液|我科研人员开发高压电解液构筑高能量密度锂电池体系】采访人员了解到 , 该研究团队开发了一种新型的高压氟化电解液体系 , 将NCM811正极材料的工作电压从4.2V突破性地提高到4.6V , 拓展了三元体系的使用上限和应用范围 , 解决了两个重要问题:极大提高了高镍三元正极体系的比容量和工作电压 , 抑制NCM811正极在高电压下的结构相变、过渡金属离子溶出以及二次粒子的开裂 , 降低了极化 , 从而提高体系的能量密度和循环性能 。 构建了稳定的CEI和SEI , 实现高负载量高镍三元体系电池在高电压下的可逆稳定循环 。
武建飞介绍 , 通过密度泛函理论(DFT)计算系统阐述了该高压电池体系性能提升的原因 。 氟取代基(-F)具有很强的吸电子作用 , 降低了溶剂的最高被占据分子轨道(HOMO) , 从而提高了电解液的氧化电位 。 通过在正极表面形成了薄而均匀的富B和富F的无机电解质界面 , 减少了二次粒子的开裂从而缩小正极和电解液之间的接触面积 , 极大地抑制了电接触不良、副反应以及过渡金属离子溶出 , 从而突破了高镍三元正极在高电压下容量衰减严重等障碍 , 为设计开发高能量密度锂离子电池提供了新的思路和途径 。 采访人员 王健高 通 讯 员 刘 佳  高 雪