阿斯麦|ASML工厂探秘:3亿美元一台的EUV光刻机首次亮相( 三 )


文章图片

在光源波长及k1不变的情况下,要想提升分辨率,则需要提升n或者sinθ值 。由于sinθ与镜头有关,提升需要很大的成本,目前sinθ已经提升到0.93,已很难再提升,而且其不可能大于1,所以提升n就显得更为现实 。
因此,在原有的193nm光刻机系统当中增加浸没单元,利用超纯水替换透镜和晶圆表面之间的空气间隙(水在193nm波长时的折射率n=1.44,空气为1),使得光源进入后波长缩短,从而提升光刻分辨率 。
基于与台积电的长期深度合作,以及希望通过弯道超车来对尼康等走干式光刻技术路线的头部光机厂商的赶超,ASML当时选择了与台积电合作,走浸没式光刻路线,在2003年开发出了首台浸没式光刻机样机TWINSCAN AT:1150i,成功将90nm制程提升到65nm 。
2006年,ASML首台量产的浸入式设备TWINSCAN XT:1700i发布 。2007年,AMSL又推出了首个193nm的浸没式系统TWINSCAN XT:1900i 。
相对于走干式157nm光刻机路线进行迭代研发的尼康等厂商来说,ASML 193nm浸没式光刻机由于是基于原有的成熟的平台进行改进,不仅成本更低、优化升级更迅速,而且精度更高,良率也更高,受到了客户的普遍欢迎 。这也使得ASML通过浸没式光刻机成功实现了技术及市场的双重领先 。
虽然尼康后期也开始转向浸没式光刻系统,但是由于时间进度上的大幅落后,也导致了其难以在浸没式光刻系统上实现对ASML的追赶,此后开始迅速走向没落 。
4、称霸
使用193nm ArF光源的干式光刻,其可以生产的半导体工艺节点可达45/40nm,而进一步采用浸没式光刻、配合比较激进的可制造性设计(DfM)等技术后,可以生产28nm工艺节点的芯片 。而要在193nm浸没式光刻的基础上,进入到更高端制程,就必须采用多重曝光,但其半导体工艺制程也只能达到7nm左右的极限 。
虽然193nm浸没式光刻技术解决了此前干式光刻技术面临的光刻光源的波长难以进一步缩短的问题,但是随着工艺制程的继续推进,要想继续提升光刻分辨率,如果不能进一步缩短光源波长,就必须采用多重曝光,
然而使用多重曝光会带来两大新问题:一是光刻加掩膜的成本上升,而且影响良率,多一次工艺步骤就是多一次良率的降低;二是工艺的循环周期延长,因为多重曝光不但增加曝光次数,而且增加刻蚀(ETCH)和机械研磨(CMP)工艺次数等 。同时,即便采用了多重曝光,对于193nm浸没式光刻机来说,制造7nm工艺节点的芯片也已经是极限 。
所以,如果要推动半导体制程继续往5nm及以下走,最为直接的方法就是采用新的波长为13.5nm的EUV(极紫外光)作为曝光光源(仅是193nm的1/14),不仅可以使得光刻的分辨率大幅提升,同时也不再需要多重曝光,一次就能曝出想要的精细图形,而且也不需要浸没系统,没有超纯水和晶圆接触,在产品生产周期、OPC的复杂程度、工艺控制、良率等方面的优势明显 。
得益于通过193nm浸没式光刻机系统在市场大获成功,成为全球领先光刻机厂商之后,ASML很快又投入了全新的EUV光刻机的研发 。
2010年,ASML首次发售概念性的EUV光刻系统NXW:3100,从而开启EUV光刻系统的新时代 。
但是EUV光刻机的研发不仅耗资巨大,即使研发成功,其单价也是高的惊人(单台售价超过1亿美元),仅有少数晶圆制造商能够负担的起(目前全球也仅有5家厂商在用EUV光刻机),主要给ASML带来了巨大的压力 。
为了继续推动EUV光刻系统的研发,2012年ASML提出“客户联合投资专案”(Customer Co-Investment Program),获得其主要客户英特尔、台积电、三星这三大全球晶圆制造巨头的支持,ASML以23%的股权从这三家客户那里共筹得53亿欧元资金,以投入EUV光刻系统的研发和量产 。