张朝阳|学物理也要用到基础数学《张朝阳的物理课》推导球坐标系体积元( 二 )


同理,将x,y,z换成速度Vx,Vy,Vz,速度区间所示的体积微元dVxdVydVz对应到球坐标系里的体积微元就是V^2sinθdθdφdV,其中V是速率。所以当速率趋于零时,体积元以V^2方式减小到零,这就解释了为什么速率趋于零时对应的速率分布值也趋于零。
分割、换元、组合、等效:计算均匀球体的引力
作为球坐标系的一个典型应用,现在计算质量为m的质点与半径为r的球壳之间的引力,质点与球心的距离为R,具体参数如下图所示:
张朝阳|学物理也要用到基础数学《张朝阳的物理课》推导球坐标系体积元
文章插图
(张朝阳巧妙选取积分变量计算球壳与质点的引力)
张朝阳继续说明,“设球壳密度为ρ,半径为r的球壳上的小体积元质量为ρr^2sinθdθdφdr,其与质点的距离设为l,则球壳与质点m之间的引力为:”
张朝阳|学物理也要用到基础数学《张朝阳的物理课》推导球坐标系体积元
文章插图
如果将x与l表示为cosθ的函数,积分会变得比较难,故尝试选取其它参量作为积分变量。注意到cosθ可由其所在的直角三角形的边长表示为:
张朝阳|学物理也要用到基础数学《张朝阳的物理课》推导球坐标系体积元
文章插图
那么质点m与球壳之间的引力为:
张朝阳|学物理也要用到基础数学《张朝阳的物理课》推导球坐标系体积元
文章插图
现在只剩下x与l两个参量,只要将其中一个表示成另一个,就可以做积分。张朝阳选择将x用l表示出来,最终全部化成对l的积分。为了完成此目的,注意到包含θ所在的直角三角形有勾股定理:
张朝阳|学物理也要用到基础数学《张朝阳的物理课》推导球坐标系体积元
文章插图
利用此公式可以将x表示为:
张朝阳|学物理也要用到基础数学《张朝阳的物理课》推导球坐标系体积元
文章插图
最后代入积分公式里并完成对l的积分后:
张朝阳|学物理也要用到基础数学《张朝阳的物理课》推导球坐标系体积元
文章插图
注意到球壳的质量为4πr^2ρdr,R是质点到球壳的距离,从上述引力的公式可以发现,质点m与球壳的引力可以等效地看成是球壳所有质量集中在球心的引力。那么将球壳按照r积分起来,就得到质点m与球体之间的引力:
张朝阳|学物理也要用到基础数学《张朝阳的物理课》推导球坐标系体积元
文章插图
他指出,“可以发现,质点与球体的引力也可以等效地把球体质量看成集中在球心,并且即使球体密度与径向距离有关,也不影响此结论。”
“球体在宇宙学里是普遍存在的形状,可以利用这个结论方便简易地得到其万有引力,所以这个结论具有非常重要的意义。”直播结尾,张朝阳告诉网友。
打造知识直播平台:搜狐视频发力价值直播 吸引诸多科普播主入驻
截至目前,《张朝阳的物理课》已直播三十期。张朝阳先是从经典物理学开始,科普了牛顿运动定律与能量动量守恒;讲解机械振动与波动方程并计算空气中的声速,顺便讨论与此相关的理想气体状态方程和能量均分定理。尔后从经典物理的“两朵乌云”说起,向近现代物理过渡,包括由黑体辐射研究引出的维恩、瑞利-金斯、斯特潘、普朗克等系列公式;由电磁学和时空性质引发的相对论议题,如洛伦兹变换、尺缩钟慢、质能关系、粒子衰变等。
此后逐步进入量子力学领域,从基础的薛定谔方程、算符对易关系、不确定性原理等理论内容,到无限深势阱、氢原子波函数、原子能级与简并等基础模型,再到谐振子量子化、分子振转光谱、自由度的冻结、气体定容比热的温度阶梯等更加具体实用的案例。内容丰富、覆盖广泛,理论公式由浅入深、繁简交融,研究对象由小到大、由少到多,从单电子原子到多电子原子、多原子分子,再到由众多粒子组成的宏观物质,实际上已经逐渐进入到统计物理学领域。接下来的玻尔兹曼分布、麦克斯韦速度分布律等,也就顺势引入,顺理成章。