芯片|AI比人类更懂芯片设计?( 二 )


人工智能如何提高芯片开发效率?
将人工智能引入到芯片设计的流程中有利于减少流程复杂性、减少错误并缩短开发周期。
例如,在芯片设计中布线过程的90%已经实现了自动化,仅需要一位经验丰富的设计师完成最后10%的工作即可。人工智能的参与可以将这最后10%的时间进一步缩短。
芯片|AI比人类更懂芯片设计?
文章插图

图 2:人工智能的作用越来越大。 资料来源:寒武纪人工智能研究
“这一切都是为了效率,”Rambus的研究员Steven Woo说,“本质上不论是人类设计师还是人工智能,其目的都是为了实现芯片优化,但人工智能显然在这一过程中更有效率。我们会对算法模型进行预训练以让其更好的工作。由于引入了强化学习算法,随着时间推移基于人工智能的设计工具会变得越来越强大。假以时日它将能够向设计人员提供几乎无错误的解决方案,这种方案优化PPA的效率会比传统方案要高得多。此外,同样由于效率的原因,芯片之间数据交换的速度也非常重要,因为AI需要快速访问大量数据。”
许多人都支持Steven Woo的这一观点。西门子IC设计部门工程总监约翰.史纳比表示:“人工智能将使得芯片设计流程进一步自动化,尤其是在芯片布局的设计过程中。实践已经证明,在模拟电路中采用机器学习方案可以提高生产力。在布局设计上,AI可以用于生成FinFET节点中的最佳器件布局建议,以最大程度的减少互连寄生效应。当芯片设计涉及加速度计和陀螺仪等微机电系统时,AI能够参与参数化的设计流程,以与人类合作设计IC和MEMS器件。这将使得设计人员能够更快完成MEMS、IC的软硬件集成,使设计工作变得更加轻松。”
人工智能如何学习?
AI“智能”的基础是它可以在短时间内进行大量的识别和匹配工作,但遗憾的是AI并不能像人类一样“学习”知识。事实上,人工智能获取知识的方式和人类有着本质的不同。一般来讲,在算法应用之前需要将包含了大量数据的训练集或输入到算法初始模型中进行训练。在经过长时间训练之后,算法才能算得上拥有了“智能”。
(雷峰网编者注:AI的“智能”来自于其在数据集中进行大量尝试和策略调整而得到的不同情况下的最优解。在实际生产遇到的新场景中AI将这些最优解策略与实际情况进行匹配,从而得出相对实际场景最优的答案。这里举个例子来解释人工智能学习和人类学习过程的不同:人类可以在课堂上记住“1+1=2”的结论,并将其应用到“一个苹果旁边摆上另一个苹果”的场景中,从而得到“这里有两个苹果”的结论。而人工智能的学习过程则更像猩猩:通过两次将单个苹果摆在面前数出两个苹果,并将这一过程重复成千上万次。猩猩就可以在下一次面对“一个香蕉旁边摆着另一个香蕉”的场景时,得到“面前有两个香蕉”的结论。)
此外,人工智能还可利用强化学习方法(RL)来指导训练结果。RL是一种机器学习技术,可以为AI的学习过程加入奖惩机制。
在一个引入了奖惩机制模型的人工智能算法中,AI的学习总是从初始状态开始,并会输出一些随机结果。然后设计师会对该结果做出判断,当该结果被接受时,将视为对模型进行了“奖励”,模型会继续向着这个趋势进行优化。相反的,当该结果被设计师拒绝时,将视为对该模型的“惩罚”。模型会调整策略方向。无论是设计师拒绝还是接受该结果,算法模型都会进入在调整后进行下一次迭代,并输出新的结果以让设计师接受或拒绝。因此随着RL学习过程的持续进行,人工智能算法将会变得越来越完善。