双原子|《张朝阳的物理课》气体比热随温而变?探究双原子分子比热问题( 二 )


双原子|《张朝阳的物理课》气体比热随温而变?探究双原子分子比热问题
文章插图
若能级0为基态,由于能级能量在e指数上而且为负,粒子出现在某激发能级上的概率,随该能级能量的升高而快速下降。为了分析在室温下粒子处在激发态上的概率大小,张朝阳将kT用波数表示出来大约为200/cm,如果要激发的自由度的能量?E对应的波数比这个大得多,那么出现在这个自由度对应的激发能级上的概率将会非常小,分配到这部分自由度的能量将明显减少,不再像能量均分定理所说的那样平均分配。
张朝阳以一氧化碳为例,根据双原子分子转动能级角动量公式,激发其转动能对应的特征波数B大约为2/cm,比室温下的kT对应的波数要小得多,于是其转动能可以被比较完整地激发,满足能量均分定理。但激发一氧化碳振动能所对应的波数则远远大于室温下kT对应的波数,按照玻尔兹曼分布公式,粒子处在振动能激发态的概率会非常小,几乎都处于基态,其振动自由度被冻结,所以计算比热时可以忽略振动部分的2个自由度,从而室温下的比热的实验测定值就是5/2R。
经过推导分析,不难理解比热随温度的阶梯性质。张朝阳解释,当温度较低时,kT较小,只有三个自由度的质心平动能可以被完整激发,对应的比热是3/2R。温度增大时,kT逐渐变大,粒子出现在转动能激发态上的概率增加,越来越多的能量可以分配到转动能上,2个转动自由度冻结解除,得到的比热就是5/2R。当温度继续升高,以至kT可以与振动能相比拟时,出现在振动激发态上的概率增大,最终振动能自由度也可以贡献比热,最终得到的比热为7/2R。这就解释了比热随温度呈现阶梯状,以及各平台对应的比热值。
统计方法计算振动热容: 粒子指数布居 能级简并度相同
“除了能量均分定理可以计算比热,我们还可以通过玻尔兹曼分布与量子力学能级计算比热。”张朝阳继续推导,由于振动能级非常简单,我们以双原子分子理想气体为例,计算其振动自由度对应的比热。气体分子能量服从玻尔兹曼分布,分子处在不同能级的概率为:
双原子|《张朝阳的物理课》气体比热随温而变?探究双原子分子比热问题
文章插图
那么,双原子分子理想气体中,单个分子的能量期望值为:
双原子|《张朝阳的物理课》气体比热随温而变?探究双原子分子比热问题
文章插图
在温度较高,kT>>?ω 时,上述能量可以按照?ω/(kT)展开:
双原子|《张朝阳的物理课》气体比热随温而变?探究双原子分子比热问题
文章插图
可以求得振动自由度贡献的比热为:
双原子|《张朝阳的物理课》气体比热随温而变?探究双原子分子比热问题
文章插图
这与能量均分定理求得的2个振动自由度贡献的比热结果2*1/2 R一致,也与定容比热随温度升高的阶梯图平台值一致。
双原子|《张朝阳的物理课》气体比热随温而变?探究双原子分子比热问题
文章插图
(张朝阳用玻尔兹曼分布推导分子振动能量)
打造知识直播平台:搜狐视频发力价值直播 吸引诸多科普播主入驻
截止目前,《张朝阳的物理课》已直播二十多期。在第一、二课中,张朝阳科普了“力”和“速度”,算出马斯克的飞船和中国空间站每日绕地飞行圈数;第三、四课和“振动”相关,科普可见光的基本知识;第五、六课引发了关于音速和温度的大讨论;在第七、八、九课重温经典物理学的两朵乌云。
第十、十一课重点回顾黑体辐射曲线及其应用;第十二、十三、十四课尝试进入爱因斯坦的思想世界,推导出著名的公式“E=mc2”,并论证钟慢尺缩效应;第十五课讲解了原子的结构和原子核的衰变;第十六课开始进入量子力学,讨论光的波粒二象性、康普顿散射、海森堡不确定性原理,以及薛定谔方程等。