深度学习|深度学习也能不玩大数据?小企业训练大模型有新解( 二 )


深度学习|深度学习也能不玩大数据?小企业训练大模型有新解
文章插图
吴恩达表示,这不仅仅是制造业的问题,以医疗健康领域为例,每家医院的电子版健康记录都有自己的格式,期望每家医院的程序员开发不同的模型是不现实的,唯一的方法就是为客户提供工具,让他们能够构建适配的模型,Landing AI目前在计算机视觉领域推广这样的工具,其他AI领域业需要做这样的工作。
结语:深度学习方法或转向,数据求精不求多长期以来,深度学习模型的更新与优化主要依赖对模型的调整,或直接补充更多数据,反复训练模型,提升模型的准确度。吴恩达则更推荐对少量噪声数据进行数据标记和更新,实现更有针对性的模型优化。
此前,吴恩达在推特上发起了“Data-centric AI”竞赛,使更多从业人员注意到通过数据进行模型优化的方法,越来越多的研究人员使用数据增强(data augmentation)、合成数据(synthetic data)等方法,实现更高效的模型训练。未来,数据优化是否会成为实现模型迭代的主流方法,值得期待。
来源:IEEE