算法|一场泛零售数智化要怎么做?( 五 )


为什么这么说呢? 人工智能这个软件,可以很小,仅在一台笔记本电脑上运行。比如,拿笔记本电脑写一个猫脸识别的算法,门口安个摄像头,猫殿下迈着猫步一脸傲娇“刷脸”进门。
可以很大,全世界的猫同时刷脸进门。这时候,笔记本电脑下线了,请上一条龙的服务。 当“大系统”和“一条龙”报错的时候,麻烦大了。研发同事高举大大的纸牌子刷出亮眼的存在感:“为什么我的任务没能跑起来?”
算法|一场泛零售数智化要怎么做?
文章插图
简单一问,暴击三连。
科技公司里,时刻都会面对工(痛)程(苦)问题,关键在于拿什么心态面对,公司的企业文化又鼓励员工用什么心态面对。没有工程文化的科技公司,是没有灵魂的躯壳。朱小坤说:“做大型计算机系统软件不出名,技术别人也听不懂,唯一期待就是业务出效果。”
朱小坤提到的大型计算机系统软件,为什么京东非要自己搞?因为没有现成的软件,配得上京东庞大的生意体量,配得上京东策马奔腾的算法,配得上京东供应链流星赶月的数智化。关键是,AI这个东西。开源的AI软件在工业级的场景里不够用,非得自建流水线,量(深)体(度)裁(定)衣(制)。
有人笑谈,这是艺术,而不是科学,在复杂和简单之间散步,设计决定需要依据科学和艺术。回想起朱小坤的发型,让人似乎读懂了什么。
朱小坤常说:“没什么诀窍,我也是学的。大型人工智能软件对基础设施的依赖非常强,而基础设施的稳定性特别难做,慢慢来,急躁不得。找到一个问题,解决一个问题。”
深度定制是个大工程,“规模”和“性能”都让人头疼。
算法|一场泛零售数智化要怎么做?
文章插图
大厂家家都要干,且都揣着绝活。京东的深度定制,不只是定制一部分,是定制一个大全套(流水线从模型开发、模型训练,到模型服务)。
如此这般,最硬核的来了。人工智能没日没夜训练模型,好比部队要军训,一批算法模型上了战场。训练得好,聪明能干。训练不好,人工智障。有人对着手机屏幕大骂:“啥破玩意,APP里给我推荐的啥东(垃)西(圾)。”
为此,需要对不同黑科技,推出不同的AI框架,比如,强化学习框架,图深度学习框架伽利略(Galileo),在线学习框架,而且都是“9N”开头的代号。例如,图深度学习框架伽利略,解决大规模图算法在工业级场景落地问题。虽然深度学习算法的生产流程的整条链路改动大,但也不能放任自流。
一百个模型,有一百个生产方法,这是灾难。要就有标准的生产方法,比如著名的BERT模型。还有统一的超大规模深度学习框架擎天柱(Optimus),支撑几十个业务场景,每天都能生产数千个增量和全量的AI模型,解决规模问题的标准化。
算法|一场泛零售数智化要怎么做?
文章插图
【 算法|一场泛零售数智化要怎么做?】Paul总在采访中谈道:“AI技术的高速发展无疑颠覆了我们的想象,目前AI技术的应用已经贯穿于京东零售整个商业流程。” 至此,人工智能,泪流满面,深鞠一躬。 商业和技术无法分割,谈100次技术,就会谈101次商业。星辰大海中,不是看到希望才去坚持,而是坚持了才看到希望。