第四届中国人工智能安防峰会|灼识咨询赵晓马:「人本城市」中的智慧城市的数智基础平台 | 人工智能( 二 )


智能汽车方向,自动驾驶是必然的趋势。不管是要十年或者二十年实现,最终驾驶员不再有。
前期从L1到L3阶段需要人不断关注和干预,这个阶段要投入大量技术研发、保证驾驶员在位,L4的时间节点到来的时间各说纷纭。
这个趋势下面有两个细分赛道,一个是新能源汽车,一个是Robotaxi,后者需要强大的运营能力和服务能力,到来的时间肯定晚于智能化或者有自动驾驶功能的新能源汽车。
眼下前装趋势非常明确,不管是做激光雷达还是做摄像头,前装市场是必然选择。
昨天有一位嘉宾说到他和车厂的合作不断被车厂、主机厂按在地上摩擦,后装慢慢会被替代掉,走得更前,和主流主机厂合作是未来的趋势。
智能单车对于自动驾驶远远不够,要做到人、车、路协同,就是需要一张网,最终实现自主驾驶,人成为相对自由的人,不能时时刻刻关注车和路上的状态。
不只是通信网络,自动驾驶现在还需要一张计算网络,计算网络能实现对智能汽车毫秒级的智能驾驶的支撑。
聪明的单车远远不够,需要有智慧的路,未来在路端、在边缘端会布置大量的激光雷达或者节点,用来存储行驶过的车或者路况的信息。
要确保L4级别的自动驾驶毫秒级的运算操作,对芯片的算力要求非常高。
商用车行业的自动驾驶更加追求经济回报。典型的物流场景,我们寻找优秀公司的方法论在于,是不是解决了行业中的痛点,或者能够大的趋势下坚持做好一件事情。
商用车的自动驾驶司机的成本在不断提升,司机在驾驶过程中会产生失误、疲劳等,物流行业竞争严重,司机超载或超时驾驶是常态,存在很多安全隐患。其次物流行业的内卷严重,运营成本一直居高不下,在长途的干线运输场景,电动化、自动驾驶的卡车存在很大的潜力,市区内的快递、物流配送,也会产生大量低速场景下的需求。
再谈谈机器人,今年很多机器人成长、融资步伐都非常快,很重要的原因是人工智能技术成熟之后,算法、感知到决策都有了诸多结果。
对于服务型城市,最终要实现执行和服务的闭环,机器人作为能够让AI能力具体化的物联网设备,是被AI、人工智能、云端的人工智能的技术赋能的。
机器人赛道,有些企业分三个阶段走,第一阶段是自己做机器人,把设备做好,交付给甲方或者工程商,这是必经阶段,企业需要考虑机器人类型和赛道,比如是服务型机器人、工业型机器人、协作机器人、医疗机器人等。
第二阶段机器人在场景中收集到大量数据(用户数据、地图或者场景的数据、运算操作的数据),这些数据沉淀后,成为AI更加智能化的重要数据来源和依据。第二阶段是有一段很长的路,企业优秀与否也可以在第二阶段见分晓。
第三阶段与特斯拉发展的逻辑相似,在大众认知里,特斯拉不仅仅是新能源车企业,更多是大数据企业,机器人企业也有这个现象,机器人最终将成长为具备自学习、自优化的物联网的终端。
其实机器人企业可以帮助新生的物联网设备公司变得更加聪明,以特斯拉提供的自动驾驶服务为例,某种意义上它可以开源赋能其他的企业。
打通城市底座,实现“人本城市”城市的需求中,有大量设备、企业、物联网终端,对于一个城市管理者来说,一个极大的挑战是,面对海量应用、海量企业、海量服务、海量数据,到底要建多少网、多少中台、多少平台才能做好?这是目前很多智慧城市会面临的问题。
将来在某些城市会逐步出现数据底座或者操作系统。
长期看,上一个时代是移动互联网时代,现在正处于移动互联网时代红利顶峰的时期,手机的所有应用都生长在iOS平台或者安卓平台上。