多模态|人工智能:从“作坊式”走向“工业化”新时代( 二 )


徐波:我们按照“两加快一努力”要求,加快原始创新策源和关键核心技术突破,努力占据人工智能科技创新制高点。
中国科学院自动化研究所始终关注人工智能中长远发展布局。十年前在深度学习刚刚开始应用于语音、图像并产生技术突破时,我们意识到感知类人工智能应用将逐渐由产业界为主导,于是开始布局更前瞻性的类脑智能,推动人工智能和脑科学的交叉研究实现,并与科学院神经所成立脑科学与智能技术交叉研究中心。目前这个方向已经成为研究所三大主力研究方向,相信在下一代人工智能发展中也将扮演重要角色。
人工智能想要在经济发展、社会治理、大工程系统等复杂问题的决策中发挥作用,需要人工智能与复杂系统进行交叉融合,这也是人工智能从感知、认知走向决策的必然发展趋势。因此,研究所进一步布局了可自主进化智能方向,研究建模人、环境和机器之间的演化、合作和竞争等关系,并通过交互提升人和机器对环境的认识和认知。这项技术可广泛应用于大量复杂问题的智能辅助决策。
这儿要重点谈一下我们最近研发的“紫东太初”多模态大模型。这是基于我们多年基础积累形成的面向关键技术攻关的研究方向。我们人类对世界的认识天然是多模态的。举个例子,我说“猫”这个字,你马上脑子里能想到猫的图片、猫叫的声音、猫的文字。我们大脑里面把猫有关的声音、图像和文字关联在一起,共同组成了“猫”这样一个语义。这个语义是跨模态存在的。模拟人的多模态认知特点,自动化所推出了全球首个千亿参数的三模态大模型“紫东太初”,把图像、文本和语音结合起来,它采用了多层次、多任务、自监督、预训练的学习方式,不仅可以实现跨模态理解,还能实现跨模态生成。这是我们在已有多个很好技术积累基础上,通过多模态把人工智能众多方向加以融合创新的研究成果,服务于产业和国民经济主战场。
人民网:在人工智能创新链中,科研院所在扮演怎样的角色?自动化所又是如何面向国民经济主战场,为我国人工智能产业链发展赋能?
徐波:人工智能包括智能和智能化。智能即智能科学内涵、基础理论和模型算法等,智能化则是智能与各个领域行业的结合。研究所发展规划一方面要承担主责主业,大力探索智能本身。同时,需要考虑智能怎么去和社会、和企业、和政府合作,政产学研结合,面向国民经济主战场,为人工智能产业链发展赋能。无论从科研还是产业化,我们始终秉持在低潮时坚守、在高潮时冷静的理念,努力成为默默的开拓者和引领者。
六年前,人工智能落地应用刚刚萌芽,基于人工智能自身发展特点,研究所及时推出了“离岗创业”制度,鼓励已在智能应用领域深耕多年的团队进行转化。制度实施以来,已经诞生了在工业视觉、融媒体、生物特征识别等垂直行业里多家有影响力的企业。离岗创业,这是一种人工智能技术转化1.0版本形式。
作为一种赋能千行百业的技术,我们不能止步于此。我们正在探索人工智能技术转化的2.0版。2.0核心就是要利用研究所力量,以核心创新为抓手,以构建创新生态为目标,做一个大的人工智能平台。如上所述,目前人工智能存在落地周期、成本、人才等问题,同时国产基础软硬件从基本“好用”到非常“好用”,都需要协同各方力量共同努力。
为了解决这一行业痛点,今年5月,中国科学院自动化研究所、华为技术有限公司、武汉东湖高新区管委会签署《人工智能技术开发合作备忘录》,三方共同筹建武汉多模态大模型人工智能平台。该平台以自动化所的“紫东太初”大模型为核心,以全国产的昇腾AI基础软硬件为底座(包含昇腾AI处理器、异构计算架构CANN和全场景AI框架昇思MindSpore等),通过合作支撑当地产业实现智能升级。大模型、大底座、大数据形成了一个天然的合作模式,来为各个行业赋能。这是我们技术转化2.0的一个开始的初步尝试。