电磁|中国工程院院士马伟明:关于电工学科前沿技术发展的若干思考( 六 )


电力电子装备的动态响应特性还与其端口激励特性密切相关,多样化电力电子装备接入同一紧耦合多能源电力网络,通过交直流电网呈现强耦合,使得紧耦合多能源电压系统中,不同开关频率、不同工作频率的多样化电力电子装备间呈现多尺度、非线性耦合特征,耦合机制复杂,机理不清,系统动力学行为多样。
已有大量事故案例表明,由于多样化电力电子装备间的强复杂非线性相互作用,紧耦合多能源电力系统运行过程中会出现一些奇异的、不规则的非线性振荡现象(见图10),振荡频率不再表现为单一模态,具有宽频振荡特征,振荡频率不再固定,呈现时变特征,振荡能量传播机制不再清晰,呈现复杂时空演变规律特征,传统分析手段已难以揭示该复杂非线性振荡现象。
在这种振荡现象下,系统电压、电流易发生大幅波动,造成电力电子装备保护动作脱网,给系统安全稳定运行带来严峻挑战。因此,在紧耦合多能源电力系统中,多样化电力电子装备非线性耦合机理不明,系统奇异振荡特性不清,传统振荡特性分析与抑制手段不再适用,亟需突破多样化电力电子装备非线性耦合机理与奇异振荡特性分析技术,保障系统安全可靠运行。
电磁|中国工程院院士马伟明:关于电工学科前沿技术发展的若干思考
文章插图

3)紧耦合多能源电力系统动态特性优化与主动支撑控制技术
紧耦合多能源电力系统中,电力电子装备占比升高,同步机装备占比相对下降,电力电子装备将主导系统动态行为,其激励响应特性对系统动态有较大影响。由电力电子装备运行原理可知其激励响应特性与装备本身控制动态密切相关,依托电力电子装备的强可控性,在外加硬件的辅助能量支撑下,电力电子装备输出动态灵活可调,具备对系统主动支撑能力,可实现多能源电力系统动态特性优化,并增强系统运行性能。
如含高比例电力电子装备的紧耦合多能源电力系统中,电力电子装备本身惯量、阻尼低,传统控制设计下,其对系统不具备主动调频、调压支撑能力,使得系统频率、电压稳定面临挑战。
为增强紧耦合多能源电力系统运行性能,电力电子装备可采用虚拟同步控制技术,通过控制策略的设计,在储能等的能量支撑下,使得电力电子装备获取和同步机相似的运行特性,具备给系统提供惯量、阻尼、调频、调压等主动支撑的能力。
而且该惯量、阻尼、调频、调压性能通过控制参数优化可灵活调节,可根据系统不同工况需求,进行变参数设置,增强运行性能。因此,基于电力电子装备输出动态灵活可调特性,亟需开展紧耦合多能源电力系统动态特性优化与主动支撑控制技术研究(如图11),增强系统安全可靠运行性能。
电磁|中国工程院院士马伟明:关于电工学科前沿技术发展的若干思考
文章插图

4电磁能装备的突破拓展了极端条件下非周期瞬态工况研究
电磁能装备可在较短时间内通过能量的存储、功率放大和调控,将电能变换为瞬时动能(如电磁炮)、热能(如固体激光器)或辐射能(如高功率微波)等(见图12)。其在运行速度、转化效率、可控性和全寿期成本等方面具有传统方式无可比拟的优势,是继机械能、化学能以来的又一次能量运用革命,在军民领域均有颠覆现有格局的重大战略意义。
电磁|中国工程院院士马伟明:关于电工学科前沿技术发展的若干思考
文章插图

4.1需求说明
不同于传统机电能量转换装备,电磁能装备受极高功率(数万兆瓦)、极短时间(数毫秒)、极大电流(数兆安)、极高速度(数千米每秒),以及上述物理量极高变化率等极端条件的共同耦合作用,其电磁、温度、应力等物理量的变化率与峰值极大,产生极端的电磁热力冲击环境,在材料上形成巨大的磁场梯度、温度梯度和应力梯度,以及多种高度非线性的瞬时耦合物理效应,这使得在传统周期稳态或准稳态工况下建立的材料模型与性能表征、设计理论、测量技术等无法适用于这种极端的冲击态物理环境。