文章插图
上图是某个用户的某次 “会话”(假设该 “会话” 中只记录了 APP 的页面浏览以及打开和退出),想要计算 “会话” 的深度,只需要数该行为序列中 “圆圈”(发生的事件)的个数。
上图的会话中 “圆圈” 有 6 个,代表这个 “会话” 的深度是 6。这个指标的使用场景一般是计算用户的每次 “会话” 或人均浏览深度。我们把用户的浏览行为单独挑出来,重新根据时间排序串成新的行为序列,并根据切割规则切割成一个个 “会话”,即可计算每个 “会话” 的深度(用户每次访问的页面浏览数),并进行每次 “会话” 或每个用户的平均数计算。
3.“会话” 的跳出率
文章插图
上图中,该用户共有 4 次 “会话”,其中有两次 “会话” 只启动了 APP,后续就没有做任何动作,这两个 “会话” 的深度就是 1。
跳出率的计算方法就是拿深度为 1 的 “会话” 个数除以总的 “会话” 个数,由此可得,上图的 “会话” 跳出率便是 2 除以 4 等于二分之一。该指标为负向指标,越高就说明用户对于 APP 不是很感兴趣,启动了之后就不会再做任何后续的操作。
4.“会话” 内部各事件的属性以上指标都是对 “会话” 本身的分析。实际上,我们还可以对会话中的每个事件进行分析,例如最常见的页面平均浏览时长,就可以通过 “会话” 中每个事件发生的时间进行计算。
五、案例:渠道投放效果分析在渠道投放过程中,渠道落地页作为用户点击渠道链接后进来的第一个页面,起到了重要的 “第一印象” 的作用,直接决定用户接下来是否会与 APP 交互。
我们平时在分析渠道效果时,会分不同渠道看渠道落地页 PV、UV 等常规指标。但是,前面所说的页面跳出率也可以用于评估渠道效果,即用户看到渠道落地页就 “跳出” 没有做接下来的操作的比例。
假如下图是统计出来的分渠道的落地页 PV、UV 和跳出率数据(全部为模拟数据,仅供讲解使用)。
文章插图
在上图中,我们发现 xxx 渠道来的 PV、UV 很高,但是跳出率很高。很多从 xxx 渠道进来的用户看到此落地页就直接离开了,可能是因为该渠道带来的用户质量太差,抑或是落地页本身有问题。虽然 yyy 渠道 PV、UV 不如 xxx 渠道,但是跳出率很低,大多数从 yyy 渠道进来的用户都会被落地页吸引并做接下来的操作。
那如何确定到底是渠道本身带来的流量问题,还是落地页设计的问题呢?
我们可以拿自然流量带来的渠道落地页 PV、UV 和跳出率做比较,因为自然流量往往质量较好(愿意通过各种方式主动点进来看的用户肯定是意向度较高的)。
如果连自然流量的跳出率都很高,说明该落地页的设计本身就有问题,如果自然流量的落地页跳出率很低,说明是 xxx 渠道带来的流量质量有问题。
六、小结以上是笔者基于过往工作经验所总结的方法论,受制于个人经验可能有不完善的地方,欢迎大家批评指正,也欢迎感兴趣的小伙伴与我作进一步交流。
小插曲我在参加人人都是产品经理2021年度作者评选,希望喜欢我的文章的朋友都能来支持我一下~
点击下方链接进入我的个人参选页面,点击红心即可为我投票。
每人最多可投3票,投票即有机会获得百万惊喜礼品&起点课堂千元豪礼哦!
投票传送门:http://996.pm/7lJpP
作者:Albert,就职于某知名大数据服务公司;专注于数据产品、数据埋点和用户行为数据分析;“数据人创作者联盟”成员。
- 高通骁龙|首批骁龙8旗舰谁更值得买?懂行人带你客观分析每台新机亮点
- dIBM Watson Advertising将AI天气分析工具引入AWS Data Exchange
- 饭饭1080°平台分析之生鲜电商平台如何选择ERP系统和SAAS系统
- Linux|为什么国企要把电脑全部换成Linux环境?能不能从专业的角度分析一下?
- 5G|新年换手机,有3类手机不适合“捡漏”,听听内行人的分析
- |Mos管被静电击穿的原因分析及解决方案
- 客服|2021年中国用户智能客服使用体验调研分析:近半数用户认为智能客服使用方便
- 设计师|系统分析师和系统架构设计师的主要区别是什么?
- 显卡|畅玩1080P的另一种选择RTX 3050 Ti,价格和性价比详细分析!
- 这些常见的电容器你认识几种?