跳出率|Session 分析的妙用

编辑导语:最近在工作过程中,发现有不少业务同事对于用户行为分析中的 Session 分析非常感兴趣,但是对于这个分析方法的定义和运用场景存在很多误解。于是笔者打算写一篇针对 Session 分析的专题讲解,希望能给各位小伙伴带来思考和收获。
跳出率|Session 分析的妙用
文章插图
一、定义Session 翻译过来是“会话”,简单来说就是用户在APP/小程序/官网等平台上进行浏览/点击/滑动等行为聚合成的序列(以下以 APP 为例,所有场景都可以运用到小程序和网页端)。
类比在电商平台购物时的场景,当我们点击并打开客服聊天框时,就进入了和客服的 “会话”,我们会向客服询问产品的情况或投诉,只有我们主动结束和客服的沟通,或在一段时间内我们没有继续向客服发消息时,客服才会发来 “满意度邀请”,此次 “会话” 就结束了。
用户启动 APP 后在 APP 上的一系列操作和互动,也可以看作是用户和 APP 的 “会话”,即使是用户短暂放下手机去做别的事,只要在后面又重新打开 APP 进行操作,此次 “会话” 就没有结束,除非用户离开的时间超过了阈值,“会话” 就会自动结束。
二、Session存在的意义有的小伙伴可能会问,既然要分析用户的行为序列,为什么不直接对用户从打开到退出 APP 的行为链条整体和链条中的各个事件进行分析,而是要创造出 Session 这个概念呢?下面给出一个例子。
跳出率|Session 分析的妙用
文章插图
在上图中,这个用户在上班路上打开了 APP,逛了一会后就退出了 APP。在下班回家后打开了 APP,逛了一会后放下手机,用一分钟倒了一杯水,接着回来又打开了 APP 继续浏览,直到最后退出了 APP。
如果简单使用 “打开-退出 APP” 作为行为序列的切割标准,该用户在上班路上使用 APP 的深度比回家后高(可以计算图中从打开 APP 到退出 APP 中出现的 “圆圈” 的个数计算用户从打开到退出过程中与 APP 的互动深度)。
但是实际上并不是如此,用户在第一次退出 APP 后只是起身倒了一杯水,并没有结束与 APP 的互动。如果轻易得出了 “上班时段的使用深度高于回家之后” 的错误结论,将会误导业务同事,严重的话可能会导致其做出错误的决策。反之,Session 可以将回家后的两段貌似 “割裂的” 行为序列进行合并,从而揭开用户在一段时间内所做的行为和背后的动机。
三、Session的“切割”原理【 跳出率|Session 分析的妙用】回到刚才的例子,既然不是粗暴地以 “打开 – 退出 APP” 作为用户行为序列的切割标准,那应该以什么标准切割用户在 APP 上的行为链条呢?
这就要引入一个 “切割时间” 的概念。在第一部分的时候笔者提到 ,“除非用户离开 APP 的时间超过了阈值,‘会话’ 就会自动结束”,这个 “阈值” 便是 “切割时间”。
再举个简单的例子,假设我们设定切割时间为 5 分钟,那么就代表着如果用户在做了某个行为 5 分钟后没有任何其他动作,前面的 “会话” 便会被 “切割” 并结束。
另外,在某些情况下,我们也可以设置特定的 “会话” 开始和结束事件,一旦用户做了某个操作就会自动开始/结束 “会话”。
四、Session中可以分析的指标1.“会话” 的个数还是回到刚才的例子,在上述场景中,这个用户该天有 2 个会话,代表着这个用户该天在 APP 上有 2 段 “访问” 记录。当然,我们希望 “会话” 的个数越多越好,这个指标越高代表用户对 APP 粘性越高。
2.“会话” 的深度