航空航天|36氪首发|「小眼探索」获千万级Pre-A轮融资,为航空航天等领域提供高端AI边缘计算硬件( 二 )


从产品层面看,小眼探索的产品开发对上游芯片供应链的依赖较大。针对近年行业缺芯潮的影响,刘相伟谈到,由于高端领域对产品可靠性要求极高,在产品开发过程中,并不会将核心算法应用都集成在一颗芯片中,通常会同时采用“FPGA+SoC”的架构。
该架构的好处是,一方面从硬件架构上保留冗余,若其中一类芯片缺货或断供,另一类芯片也能实现所有功能,以此降低缺芯的风险;另一方面,FPGA具有可编程的优势,SoC芯片具有AI推理和编解码的优势,这种架构也能提升硬件的通用性。
刘相伟告诉36氪,尽管现在航空航天领域仍有不少系统和产品使用进口芯片,但目前国内供应端的芯片产品产量正逐步提升,已形成国产替代的可能性和趋势,预计未来3-5五年的大量产品和系统将以国产芯片为主。但要完全实现国产化,则需10年以上的时间进行更换。
现阶段,小眼探索已拥有10余项核心发明专利、集成电路布图2篇,支持复旦微等国产FPGA,同时公司今年和清华类脑计算中心、灵汐科技达成合作意向,未来将采用清华类脑芯片对航空航天等高科技领域进行产业化赋能。
除此之外,针对平台替换过程中的算法迁移成本高的问题,小眼探索也有着自身的解决方案和技术壁垒。
刘相伟提到,传统技术方案的“FPGA+DSP”架构在高端装备领域的边缘计算平台已应用了50余年,若将国产AI芯片替换进去,难点在于如何更好地将原有芯片功能完整覆盖,实现功能的无缝对接。
首先是要打通国产SoC的接口和协议,由于国产SoC的接口协议均对标国外芯片的接口协议,与DSP和FPGA的协议并不兼容,无法直接进行替换。因此,研发人员需在FPGA中做高速并行的数据流转和协议转换,将传感器数据与国产SoC连接起来,实现协议和软硬件接口的兼容、无缝对接。
其次,研究人员会将他们在服务器上训练好的模型移植到芯片中,由于芯片本身的资源和架构限制,难以承载通用的模型和太大的参数,因此他们要对模型从“训练、模型转化、芯片上推理”三个方面进行模型简化,例如裁剪神经网络层、将浮点转换成定点运算等,以此降低模型对芯片运算资源的消耗。
此外,航空航天等高科技领域对数据安全的高要求和高保密性,要求数据只能在本地进行训练,研究人员还需要花大量的人力和时间成本投入到本地的数据标注和训练工作中。因此,在小眼探索团队中,80%以上均为研发人员。
现阶段,小眼探索拥有两种商业模式,一是以销售纯硬件为主,包括计算平台模组和系统产品;二是若有新场景和新数据出现,公司会重新对算法和模型进行优化升级,再进行服务收费,整体交付时长约为一周。
截至目前,小眼探索的产品已落地无人机、卫星等载体,涉及SAR成像应用、无人机巡检应用等,客户覆盖航天科技集团、航天科工集团、北方夜视集团、中航工业、国家电网公司等。
营收方面,今年公司营收预计超过1000万人民币,计算平台累计出货超600套。接下来,公司计划每年完成一轮融资,预计明年5月将完成5000万A轮融资,逐步到2025年完成计算平台和系统级产品的规模化建设,包括产线、厂房等,预计年产能约达5000套,营收规模5亿。