框架|上海交通大学过敏意:面向城市治理的图智能分析框架( 二 )


五个不同领域的图化治理场景:

框架|上海交通大学过敏意:面向城市治理的图智能分析框架
文章插图
(1)公共安全分析。首先,在传感器网络方面,传感器网络的互联结构本身就是一张图。然后多个传感器形成了传感器之间的互联的图的分析,比如说一个传感器到另一个传感器的路由,实际上就是图分析的问题。其次,比如说遥感监控,现在我们做了人脸识别,人脸识别原来是抓特征,现在我们新的方法可以从图结构中分析人脸特征,这又是一个图分析的问题。
框架|上海交通大学过敏意:面向城市治理的图智能分析框架
文章插图

(2)生态环境监测。2017年波兰气象部门从2 000个不同的传感器节点对臭氧层进行了监控。其中的很多问题也是图结构的问题,比如一个节点到另一个节点之间臭氧的影响,以及对整个的布局来说,会不会产生时间上和空间上的最佳布局等。还有城市楼宇能耗城市化管控。城市楼宇之间,比如高层和低层电能的管控,这也是一个用图来表示的问题,因此很多优化都离不开城市的图化分析、查询等等。
框架|上海交通大学过敏意:面向城市治理的图智能分析框架
文章插图

(3)医疗健康服务。生命健康基因图谱的分析,也是图的重构、图的迭代、图的分析。还有人脑网络的功能区域分析,现在脑电采集实际上都可以从图的结构里面反映出来,所以有大量的个性化的图的分析。
框架|上海交通大学过敏意:面向城市治理的图智能分析框架
文章插图

(4)交通出行指导。道路出行中最短路径算法本身就是一个图问题。但是增加了手机数据、路网数据及工具监控数据等,那么这些图就变得越来越复杂。还有充电智能调度,现在我们新能源的车越来越多,新能源的充电桩以及充电桩的位置等都是图的查询和分析问题。
框架|上海交通大学过敏意:面向城市治理的图智能分析框架
文章插图

(5)城市大脑运维。城市大脑的基础设施有云计算、大数据、大数据平台。这一平台现在用到了云原生的技术,云原生的技术就要用到微服务。微服务里面就有很多调度的问题,实际上微服务本身的联结就是一张图结构。要提升系统性能,就要进行图的分析和精细化查询。还有硬件资源管理,捕捉资源瓶颈,用户动态图的系统变化等,这些都是图的结构、分解和图的综合等,实际上都可以归纳到图的特征的问题。
因此目前对图的分析和图的管理越来越迫切,现在我们国家以及世界上很多科研机构公司等都研发了一些面向图计算的工具,但还是遇到了问题。

2

应对挑战的城市大数据协同计算框架
面对大规模结构化的城市治理任务,现有大数据计算平台存在收敛慢、吞吐低问题,影响城市治理决策。
(1)收敛慢:传统大数据框架如Spark/MapReduce不适应图的不规则访问模式。
框架|上海交通大学过敏意:面向城市治理的图智能分析框架
文章插图

开发环境未针对图应用定制化设计,难以高效优质地进行执行阶段划分
我们以前“十三五”期间做的事情,基本上都是用的传统spark、MapReduce等大数据框架来做的,但是这些问题如果要弄到图里面预处理,比如说图要进行预置、分拆等等,用传统框架就不适用了,它会非常慢,要循环往复来做。
(2)吞吐低:现有主流图计算框架如PowerGraph/Ligra不支持高并发请求。
框架|上海交通大学过敏意:面向城市治理的图智能分析框架