微软|为AI程序员减负!微软来源深度学习库SynapseML,支持可扩展的智能( 二 )


SynapseML引入可以用于个性化推荐的Vowpal Wabbit框架,以及强化学习的新算法模型contextual bandit,帮助开发人员训练AI模型。
在不需要标记数据集的情况下,无监督学习可以帮助填补某些领域知识的空白。例如,Facebook最近发布的无监督模型SEER,可以在10亿张图像上进行训练,并能在一系列计算机视觉基准测试中取得较优秀的结果。
然而,无监督学习并不能消除系统预测中存在偏差或缺陷的可能性。一些专家认为,消除这些偏差可能需要对无监督模型进行专门培训,并使用额外的、较小的数据集来消除偏差。
“我们的目标是让开发人员免于担心分布式实现细节的麻烦,并能够将它们部署到各种数据库、集群和编程语言中,而无需更改开发人员的代码。”Hamilton补充道。
结语:开源引擎库,促进算法落地伴随着科技发展突飞猛进,AI所引发的技术革命也在飞速发展,包括机器学习等领域的AI研究在性能、效率上不断升级的同时,其算法落地仍面临困境,无法大规模投入使用。
微软此次开源SynapseML库,不断改进机器学习算法,将现有的机器学习框架和微软开发的算法统一,提高AI的数据处理和分析能力,进一步促进AI技术发展。
【 微软|为AI程序员减负!微软来源深度学习库SynapseML,支持可扩展的智能】来源:VentureBeat