样本|人工智能的人工部分-数据标注(上)( 二 )


样本|人工智能的人工部分-数据标注(上)
文章插图
第一,多维分析与综合分析相结合。
简历与职位的匹配度影响因素肯定是多维的,不能只参考工作经历或专业要求一个因子,或者某几个因子,要多维分析,最终再给出综合评分结果。当然简历与职位的匹配标注也不可能一上来就能给出综合的评分,不能纯感性的告诉标注员:你觉得是简历与职位非常匹配就给分,不匹配就不给分,这在逻辑上也不合理。所以要先给单一因子打分,然后参考每个因子的评分结果,最终再进行综合分析给出评分结果。
第二,因子权重影响因素场景化。
前面有提到简历与职位匹配度评估需要给每个因子打分,那每个因子打分结束后怎么给出综合评分呢,给每个因为赋予权重吗?然后按权重计算总分?答案是否定的,我们要结合具体场景把所有因子进行归类分析,比如设定一些重要因子,如果重要因子不匹配可能就直接不给分,比如工作经历代表的是一个人的胜任力,如果该候选人不具备该岗位的胜任力,总分肯定是0分。还有一些因子虽然不是很重要,但会影响评分,有些因子时而重要时而不重要,比如年龄,HR想要1-3年经验的行政专员,候选人40岁,该情况肯定会影响最终评分且很有可能总分是0分。所以把所有影响因子结合场景进行归类分析是十分必要的。
第三,问题类型标签化、结构化。
标注结果一般情况下会以分数的形式展示,ABCD,或者0123,然后一组数据没有得到满分是因为什么呢?哪里不匹配呢?所以前期制定标注规则时一定要把原因分析考虑进去,列出所有不匹配的原因,形成结构化的原因标签,有利于最终分析Badcase的分类与占比,然后算法或者策略团队在优化时可以优先解决占比高或影响恶劣的case。
数据标注是一项看似简单实际却十分复杂的工作,涉及标注分类、标注规则制定、标注原因分析、标注系统搭建、标注团队管理等,尤其涉及到专业领域的标注则更困难,本篇主要介绍了标注分类、标注规则制定,细节的标注规则以及标注系统的搭建,标注团队管理会在后续更新,希望大家持续关注,感谢阅读!
本文由 @艳杰 原创发布于人人都是产品经理,未经作者许可,禁止转载。
题图来自Unsplash,基于CC0协议。