玩家|「降维」,RoboTaxi玩家的唯一出路?( 二 )


由此ACC自适应巡航、LCC车道居中辅助、ALC自动变道辅助、BSD盲区监测预警、LCA车道变换预警等辅助驾驶功能在量产车型的不断渗透,其中自动泊车辅助、导航领航辅助成了自动驾驶企业们相互比拼的重点。
降维的还有硬件,原本配置在L4测试车辆的硬件诸如激光雷达、高性能芯片等也渐渐前装到L2量产车中。
去概念化、去名词化,自动驾驶企业不再更多强调产品和方案是L2级还是L2++级,这成了目前ADAS解决方案的趋势。
真的是“降维打击”吗?在科幻小说《三体》中,某外星种族向太阳系丢了一个叫“二向箔”的武器,于是太阳系由立体的三维变成了平面的二维,地球毫无还手之力,随之毁灭。
“降维打击”一词由此被广泛传播,延伸到商业领域,通常代表着一种碾压式的新商业模式或技术,比如网购平台之于实体店、免费模式之于收费模式。
但一家原本专注于RoboTaxi的企业切入去做矿区、港口、机场等场景真的能做到“降维打击”吗?
实际上,虽然矿区、港口、机场等场景由于有着环境相对固定、交通流量小、行驶速度较低、ODD运行设计域相对简单等特点,自动驾驶技术落地更加容易,可这并不意味着有技术优势的企业进入这些场景就能快速“攻城掠地”。
辰韬资本执行总经理贺雄松就认为,比如矿山场景的无人车技术在达到基本要求后,更重要的是自动驾驶企业在运营、商务方面的积累。
另外这些场景的工作环境很恶劣,一些技术人员可能无法承受长时间连续作业,自动驾驶企业的技术优势也许就难以发挥出来。
在自动驾驶行业由技术研究阶段过渡到产品落地阶段的当下,企业无论是进入何种市场,除了要考虑资本、政策、技术等维度,还要考虑产业链的协同融合。
“你和主机厂的关系、你对产业链上下游的Tie1、设备厂商的关联度和议价能力、你对商业化应用的思考和布局是否领先,都是评估企业在乘用车和商用车赛道资源倾斜程度的重要因素。”此前有业内人士对新智驾指出。
在这方面,那些早早进入垂直场景的自动驾驶企业或许更具有先发优势,胜在对垂直场景的商业化理解和下游客户的适配深度绑定。
驭势科技联合创始人、首席系统架构师彭进展对新智驾表示,机场、厂区等场景的壁垒不仅仅体现在自动驾驶技术本身,同时也需要企业对行业的深刻理解、对行业资源的深度利用、真实的商业运营能力及先发的企业资源等。
另外,RoboTaxi企业能切入L2级别赛道的底层逻辑在于,二者技术本身具有互通性,指技术点本身的差异不大;以及围绕基础架构的技术迁移效率是高的,即缩小了技术点差异的效率。
天下武功,唯“快”不破。因此乘用车公司能否“降维打击”的核心,并非技术,而在于乘用车公司能否通过一定规模的试运营锤炼出来的高效基础架构,帮助它们在商用车领域快速积累、分类、使用和验证新的技术问题,并加速缩小特定技术点上的差距。
但在全球范围内,目前还没有一个成功案例能把无人驾驶系统和辅助驾驶系统混合在一起。
AutoX(安途)发言人对新智驾表示,L2-L3级系统的辅助驾驶系统,与L4-L5级全无人系统是两种不同的技术,二者没有进化关系,辅助驾驶不能变成自动驾驶,自动驾驶系统也不能降维成辅助驾驶。
“要想将L4的算法和数据应用到L2上,企业基本要从零开始,重新开发,因为二者的算力和传感器有着天壤之别。”
魔视CEO虞正华与上面的观点比较类似,相比于L4级方案,L2级别的解决方案用的传感器和芯片算力更低,直接从L4降下来的数据和算法,比较难适配L2的传感器和芯片。