公式|运营4大底层能力之三:如何做到数据驱动运营?( 三 )

数据分析常见误区如下:
1)无对比
只给出绝对值,数据只有通过对比才能判断效果,比如跟目标对比,跟历史对比(同比环比),跟竞品对比,跟同类型项目对比。如大家在周报中经常会出现仅同步上周营收XX万,增粉XX万等绝对值,只呈现绝对值是无法体现数据效果。
2)无结论
只做数字上的呈现、计算和对比等,但无实际的结论,比如按照第2部分提到的直播电商GMV拆解公式,对每个环节指标,转化率数据做出呈现和对比,但无具体的结论和分析。
3)脱离业务本身
同一个数据原始表格,熟悉和理解业务的运营和外行的人来分别进行分析结论会有很大差别。
4)无明确分析依据,用主观思路来做分析
比如A课程上周营收环比增长50%,很多人习惯性说是可能是做了XX动作,或者简单地说上周做了曝光和宣传,至于曝光效果无数据支撑,实际上有可能曝光带来的详情页UV提升有限,而在转化率上有明显提升。
正如前面的分析思路,建立课程营收模型:课程营收=详情页UV*转化率*客单价,如果是营收阶段性出现明显上涨,在价格不变的情况下,从表象上是详情页UV或者转化率某一指标或者两个指标都发生明显变化。
这个时候要看不同环节数据变化情况,进而分析发生变化的本质原因(同一渠道在不同节点上曝光效果会有很大差异,课程的需求节点和开课时间也都会影响点击和转化),这个时候按照上述的3W思路可能会分析得更深入和精准。
04 数据分析有一个隐藏的能力就是:敏感度。
不同的人对数据的敏感度不同,主要表现在拿到原始数据后的第一反应,对数据敏感的人,即使对原始数据不做透视也能够快速看出一些规律和发现数据问题,对数据分析和关注成为一种潜意识的习惯。而培养数据敏感度除了潜质之外,更重要的是刻意训练。
比较有效的方法就是:每天坚持看数据,即每天至少30分钟~1小时的时间去研究数据,从不同维度和角度去分析,如当期数据跟历史数据对比,当期数据跟同类型项目做对比等。只要坚持半年到1年的时间可以有效提升对数据的敏感度。
#专栏作家#超哥Jason,微信公众号:超运营思维,人人都是产品经理专栏作家。后续持续从运营思维、认知、分析、学习、实践、总结、成长7个方面进行分享输出!大厂某教育产品线业务负责人。
本文原创发布于人人都是产品经理,未经许可,禁止转载。
题图来自Unsplash,基于CC0协议。