在研究层面,开展更多以人为本的情境和经验性研究,以获得不同解释对不同利益相关者在多维度下的精细理解。这是因为当下游效应(如用户对人工智能解释的看法)表现出来时,陷阱就会表显露并被识别。如上述案例,具有不同人工智能背景的用户引发了同样的陷阱(即,对数字过度信任),但却有不同的启发模式。其实,基于这则案例,我们还可以从用户知识背景和理解分歧两个维度进一步探讨:用户的组合特征(如教育背景和专业背景)如何影响 EPs的易感性?不同的启发式方法如何发现不利影响?不同的用户如何适应意料之外的解释?在这些探索中,具备陷阱意识可以帮助我们提高洞察力,发现人们对人工智能解释的反应是如何与设计者的意图相背离的。在设计层面上,一个有效的策略是强化用户在解释过程中的反思(而不是一味地接受)。最近以人为本的XAI工作也主张将通过反思来促进信任的方法概念化。Langer等人指出,如果我们不对解释进行有意识的和慎重的思考,就会增加掉进“陷阱”的可能。为了引发人们的注意,Langer等人建议设计 "努力的反应 "或 "有思想的反应",它可以采用缝合设计的视角来帮助提高注意力。有缝设计是对计算系统中 "无缝 "概念的补充,其概念根源在于普适计算。接缝的概念与XAI非常吻合,这是由于:(a)人工智能系统被部署seamful spaces空间中;(b)该方法可以被看作是对“seamless”的黑暗模式人工智能决策的回应,具有“zero friction”或理解力。 就形式和功能而言,seams战略性地揭示了不同部分之间的复杂性和连接机制,同时隐藏了分散注意力的元素。这种 "战略性揭示和隐藏 (strategic revealing and concealment)的概念是seamful design的核心,因为它将形式和功能联系起来,而对这种联系的理解可以促进反思性思维。因此,Seamful explanations战略性地揭示了系统的缺陷和承受力,并掩盖了那些分散注意力的信息,对它们的认识可以促进有用的反思。在组织层面上,为设计者和终端用户引入教育(培训)计划。搭建一个生态系统是很重要的,因为EPs具有社会维度的复杂性,我们需要一种超越技术层面的策略。近期工作表明,对黑暗模式的扫盲可以促进自我反思和减轻危害。EPs扫盲计划可以制定如下:(a)帮助设计者意识到EPs可能出现的表现;(b)让终端用户提高识别“陷阱”的能力。 总的来说,这些策略有助于我们用积极地预防EPs,促进对陷阱的复原力。虽然不够详尽和规范,但它在解决潜在有害问题上迈出了重要的一步。从安全性和可靠性的角度来说,XAI系统对人工智能解释所产生的影响进行分类非常重要。这项研究通过“可解释性陷阱(EPs)”概念的讨论,揭露了人工智能解释可能带来的意料之外的负面影响。文中关于EPs的操作化和应对策略的解读和见解,有助于改善XAI系统的问责和安全机制。基于这项研究发现,作者认为关于XAI还有一些开放性的问题值得进一步讨论:1. 如何制定有效的 EPs 分类法,以更好地识别和减少负面影响?2. 如何使用不恰当解释来说明“陷阱”在现实中的影响?3. 如何评估训练过程,以减轻“陷阱”可能带来的影响最后作者表示,从人机交互到人工智能社区,他们正在通过基础概念与应用进一步研究可解释性陷阱。相信通过了解XAI系统中陷阱的位置、方式和原因,可以显著提高人工智能系统的安全性。