rss|MIT博士生杨珩:从L1到L5,自动驾驶的“拦路虎”可能是一个数学问题( 二 )


但话说回来,「可认证算法」所扮演的角色虽然听起来很简单,研究起来却并不容易,因为在这个研究的过程中涉及到了对截断最小二乘法(Truncated Least Squares, TLS)的求解。TLS是一个非凸优化问题,其可行域集合可能存在局部最优点,但求解全局最优的难度相当于NP难题。
因此,尽管早期欧洲有些学校也沿着可认证算法的方向研究,但他们解决问题的切入点只停留在建模阶段,且面向的场景为没有异常值的情况。
基于Bandeira的工作,杨珩与他的博士导师 Luca Carlone 还就「可认证算法」制定了更高的标准。
假设算法为 A,A 的目标是解决优化问题 P,而优化问题取决于输入数据 D。那么,如果该算法是可认证的,则必须同时满足三个条件:
1)A 必须是多项式算法(polynomial algorithm),理论上必须要快;
2)在解决 P 后,A 要么得到一个全局最优解,以及证明该解为全局最优的“证书”(certificate);要么失败,没有得到全局最优解,只得到所谓的“measurable suboptimality”,即所求得的解与全局最优解之间的距离;
3)对于大部分 D,A 都能将 P 解到全局最优。
第三个条件由杨珩与 Luca Carlone 添加,目的是为了排除近似算法。所谓“近似算法”(approximate algorithm),指的是算法得到的解永远只能是近似最优。在自动驾驶中,近似算法相当于在任何情况下都无法取得全局最优解,一直“报错”,这会对驾驶安全造成极大隐患。
所以,在杨珩与团队的假设中,A 只有在处理大多数不同情形时能得到全局最优解,才能被称为「可认证算法」,满足自动驾驶的安全需求。

2. “非凸”转“凸”
2018年12月,杨珩加入麻省理工学院信息与决策系统实验室(Laboratory for Information & Decision Systems, LIDS),师从MIT莱纳多职业发展副教授 Luca Carlone,开始从事计算机视觉与机器人的结合研究。
一开始,他们只是从一个小的点云配准/重建(point cloud registration)问题出发。所谓“点云配准”,指的是求两个点云之间的旋转平移矩阵,将源点云变换到与目标点云相同的坐标系下。比如,一辆车无人车分别处在 a 点与 b 点,用无人车点雷达分别对着一栋楼扫一下,再把两张扫描的图融合在一起。
他们针对这个问题设置了一个可认证算法,并在2019年1月投了一篇文章到机器人顶会 RSS(Robotics: Science and System),文章被接收。在这篇工作中,他们使用TLS来重新设计点云优化估测问题,使估计对大部分虚假的点到点对应关系不敏感,可以容忍高达 99% 的异常值(outliers)。
rss|MIT博士生杨珩:从L1到L5,自动驾驶的“拦路虎”可能是一个数学问题
文章插图


图注:杨珩被 RSS 2019 接收的工作,论文地址为 https://arxiv.org/pdf/1903.08588.pdf
但是,他们在 RSS 2019 中提出的可认证算法精确度并不够突出,有时无法满足上述所说的第三个条件(对大部分输入数据都能获得最优解)。许多时候,该算法得到的差距至多是 1e-2、1e-3,而不是1e-6或1e-10等接近0的差距。
从 RSS 2019 开始,他们就一直在研究可认证算法。
2019年2月左右,杨珩用两周时间独自琢磨,看了许多数学资料,尝试换一种对原问题(TLS)的求解方法。他从一个数学思维出发,提出了半正定规划(Semidefinite Programming)松弛,将非凸优化问题 TLS 转化为凸优化问题。这个方法十分成功,他们投到了 ICCV 2019,被成功接收。
rss|MIT博士生杨珩:从L1到L5,自动驾驶的“拦路虎”可能是一个数学问题
文章插图

图注:杨珩被 ICCV 2019 接收的工作,论文地址为 https://arxiv.org/pdf/1905.12536.pdf
对杨珩来说,ICCV 2019 的这篇工作有里程碑式的纪念意义:因为那篇文章是第一个能将有异常值(outliers)的机器人感知问题在多项式时间内(polynomial time)解到全局最优(global optimality)的工作。我们设计的半正定规划松弛(SDP relaxation)是extremely tight,那个算法几乎对所有问题都能得到全局最优,而且它解的原问题是一个带有二元变量(+1 和 -1,mixed integer)的非凸问题。这种问题是一个NP-hard问题。