干预|如何设计数据干预策略?( 三 )


互动数据通常在内容消费路径中展示,用户直接触达,因此做好上述3点平衡后,一般用户不会对干预行为有察觉。但是,有心人可以通过其他关联数据间接推测出数据干预行为的存在。
例如:若某个创作者内容平均浏览量为10万,但是该创作者的关注粉丝数只有10个,那就出现“一眼假”;若某个主播专栏作者每篇文章在平台内的阅读量平均10万+,但是平台的对外财报显示月活跃用户一共10万+,那么竞争对手就可以揣测出该专栏作者的数据有水分。
干预|如何设计数据干预策略?
文章插图
某博主,粉丝数1亿,单条内容评论量只有600
互动数据与其他关联数据的匹配极易成为大坑,主要是因为:
“其他关联数据”的计算、产出、发布、展示通常不受互动产品经理和策略运营控制、负责。例如上述举例中,“关注”功能归属于用户体系设计范畴,“对外财报”更是财务、数据等多部门配合的结果。若需进行协调,往往涉及跨部门的合作,非常考验产品经理和策略运营的个人能力。
“其他关联数据”的类型不可控。在做产品设计和具体的干预策略设计时,产品和运营可能已经对潜在的其他关联数据类型做了摸排,确保所有的相关数据看起来协调、自然。
但是随着时间的推移,其他业务线新增的功能体系可能会导致新的关联数据类型产生,又由于数据干预的敏感性、保密性很高,关联业务负责人不掌握具体干预信息,导致新的数据类型在设计、产出、发布时没有兼顾数据干预系统的存在,最终使得互动数据与其他关联数据不匹配。
二、实战复盘1. 数据干预的支撑系统——Bot假账号系统最广为人知的Bot假账号是微博的僵尸粉、直播平台的机器人观众。这类系统在数据干预体系中扮演基础设施的作用——被干预的虚假数据由这些账号来模拟真实用户路径从数据层进行承载。
举例来说:运营配置干预策略,为某篇文章注入100个虚假收藏量。系统即向Bot账号系统中提取100个账号,将这篇文章收藏至自己的收藏夹。后续若有第三方读者可以在假帐号的收藏夹内找到该文章。文章创作者也会收到文章被用户ABC收藏的消息推送。
Bot假帐号系统能极大提高数据干预的真实性,既可以通过体验层模拟真实用户行为,“骗”过内容创作者、内容消费者,又能够在数据层面瞒过第三方数据爬取、统计机构的数据过滤系统。
那么,Bot假账号系统的搭建设计有哪些注意要点呢?
1)重视通用性
Bot假帐号系统之所以被定义为“基础设施”,原因在于:

  • 其服务的业务方向多样。最常见的如互动数据干预系统、用户体系干预系统。
  • 单个业务方向,具体的数据指标多样。例如互动数据干预系统内包含点赞、收藏、分享,每一个指标的实现都有其独特性。
因此Bot假账号系统在初始搭建时应以组件思维进行规划,以适应后续可能接入的多业务类型。
2)重视账号调取的效率
  • 能配合干预业务需求进行及时、高并发、大数据量的账号调取、模拟
  • 能避免同一账号对同一内容目标的反复调取。在互动数据干预业务里,同一个账号对同一目标的反复互动经常意味着“互动取消”,例如点赞/取消点赞。
3)重视假账号的真实性维护
不论假账号来源于平台内的流失用户(参照微博做法),还是系统自行创建(B站、直播平台),都需有维护机制,确保这些账号足够真实。一个真实性过关的账号需满足: