风控|如何用数据分析框架应对反欺诈风控问题

编辑导读:随着互联网的发展,诈骗手段也越来越高超,不少人都深受其害,因此更加凸显了反欺诈风控的重要性。本文将从数据的角度来讲反欺诈风险的存在和防控的方法,希望对你有帮助。
风控|如何用数据分析框架应对反欺诈风控问题
文章插图
有时候也在想,为什么我们要做反欺诈风控,做这类风控的意义在哪里,对于没有风控经验的人,如果使其理解风险的存在以及控制的可能性。本文将从数据的角度来讲反欺诈风险的存在和防控的方法。风控最核心的要素是数据,要想通过数据驱动风控,且能够挖到背后的根本原因,需要有全面完整的数据分析思维框架。
作为风控人员,一般遇到的工作场景有两类:
一、发现风险黑产为了骗取平台的利益并将其最大化,通常使用相关作案工具,比如模拟器、云手机等模拟正常用户行为,以便绕过风控平台的监测,因此为了更精准快速地识别数据里的异常,需要有一套分析流程和框架,笔者根据自己的工作经验,通常通过自建的风控指标体系,并辅助监控体系来实现这一目的。
1. 风控指标体系与数据分析同行类似,风控的指标体系也需要反映出:发生了什么?为什么发生?如果持续这样下去会发生什么?以及我们能做什么?但因为具体业务场景不同,无法像正常同行给出具体诸如DAU、GMV、ROI这么一个统一的标准,不过可按照主次分为一级、二级和三级三类指标。一级指标:指的是对业务指标产生最直接最核心影响里的风控指标,且通过其数据的变化可下钻挖掘根本原因或预测未来发展趋势。一级指标通常是最精炼的,一般在1~3个以内,且最好也能直接对业务产生关联,笔者目前使用的是关乎风控质和量的两个指标:准确率、关联核心业务的量级占比指标,前者是质,后者是量,因为涉及具体业务,此处量级不便明说。
二级指标:指的是最直接导致一级指标变化的度量,且其自身也包含很丰富、可下钻挖掘的信息,通过对其分析可确定研究或者调查方向。二级指标通常维持在3-5个左右,笔者目前使用的维度是各类决策结果命中率、场景、渠道以及规则id。这四类指标都直接对一级指标产生核心影响,通过对其数据变化的监控可以快速定位风险问题。
三级指标:指的是在发生风险问题是,可以直接定位到问题所在点的度量。三级指标一般不可继续下钻,不过可以直接反映出用户行为特征,给业务带来什么样的结果。三级指标的种类比较丰富,包含基础数据、行为数据、设备指纹数据等等,通过分析它们直接的变化可直接定位风险发生在的具体特征,比如具体的业务子线、用户类别、操作环境等等。
2. 监控体系因为风控在明,黑产在暗,无法做到实时投入人力做相关的分析和排查,因此需要完善有效的监控体系辅以完成:也就是不仅需要纳入上述指标,并且还需要及时预警。笔者目前通过两种方式完成:自动化预警通道:通过对历史存量数据建模,达到对未来流量数值的波动预测,并通过邮件、短信、电话等载体方式预警给运营人员。笔者目前主要针对总流量、一级指标、部分二级指标做相关的自动化预警。
人工预警通道:由于自动化预警需要基于历史存量数据进行预测,对于刚刚上线或者尚无规律可循的业务流量,则需要通过人工预警通道加以实现。笔者目前主要通过风控相关产品的接口来实现上报,上班的时效也是准实时的。
此外,风控大盘也是监控体系里的一个核心工具,大盘可将上述指标可视化,通过实时数据的线上监控,达到快速响应的效果,笔者目前的大盘内容大致可分为三个领域: