思维|浅谈在探索数分之路上“数据思维”培养( 二 )


思维|浅谈在探索数分之路上“数据思维”培养
文章插图
三、常用数据做多维度对比“对比、细分、溯源“是数据分析的6字箴言,而对比虽然是最简单的,却是在培养数据思维中非常重要的一环。所谓对比是指将两个或两个以上的数据(指标)进行比较,分析它们的差异,从而揭示这些数据所代表的事物发展变化情况和规律性。来判断业务进展情况以及追踪业务是否有问题。其特点:简单、直观、量化。即可以非常直观的看出事物某方面的变化或差距,并且可以量化、准确地表示出这种变化或差距是多少。
对比分析思维的分为两类类:静态比较(和行业比)和动态比较(和自己比)
1. 静态比较即在同一时间条件下对不同总体指标的比较,如不同部门、不同地区、不同国家的比较叫做横向比较,简称横比。
举个例子:女友问你“你觉得我胖么?”你去拿全国女生体重平均值和女友体重做对比,这就是和行业比。
【 思维|浅谈在探索数分之路上“数据思维”培养】一般来说,同业的数据来源主要公开发表的数据,包括上市公司的财报、主动披露的数据等等,数据的信息源不同其准确性也会存在各种差异,但是通过仔细分析还是能得到一些自己想要的东西,取决于每个人数据思维能力的高低。
2. 动态比较即是在同一总体条件下对不同时期指标数值的比较,也叫纵向比较,简称纵比。
再举个例子:比如女友问“我比上个月胖么?”就是和自己比。
一般来说,会进行同比、环比等,通过趋势图观察一段时间的走势,这是常见的比较思路,但是注意不要忘记最初设定的目标。在工作中会发现有个问题就是有时候我们会发现同比环比之后,指标都上涨了,营造出欣欣向荣的局面,但其实并没有达到我们的目标,只是基准值太低,这是一种典型的目标侵蚀。
总之,这2种方法既可单独使用,也可结合使用。纵向的是因果,横向的是相关。然而对比分析的时候要遵从以下原则:

  1. 对比对象要一致
  2. 对比时间属性要一致
  3. 对比指标的定义和计算方法要一致
  4. 对比数据源要一致最后就是多比较
四、多熟悉各种数据分析模型数据模型其实是各种数据分析经验的抽象集合,你拥有了更多的数据模型,也就拥有了更多的认知“数据”世界的工具。在斯科特·佩奇的《模型思维》一书中,提到了20多个思维模型,我们在数据分析过程中可能会经常用到的主要有:AARRR(海盗模型)、漏斗模型、Google’s HEART、金字塔模型、RFM模型、用户生命周期模型、滑梯模型、消费者行为模型等等。
1. AARRR模型AARRR增长模型出自于增长黑客,又称海盗模型,即获客、激活、留存、变现、传播推荐。
获取用户(Acquisition)、提高活跃度(Activation)、提高留存率(Retention)、获取收入(Revenue)、用户推荐(Refer),这个五个单词的缩写,分别对应用户生命周期中的5个重要环节。
获取用户(Acquisition):通过一定的方式让产品在一些渠道上面得到展现,并使看到展现的用户转化成产品用户。
提高活跃度(Activation):提高产品的使用粘性,提升用户使用产品的深度。
提高留存率(Retention):如何让用户不断的使用我们的产品,减少用户的流失,提升用户粘性。让用户无法离开产品。
获取收入(Revenue):通过一些手段和渠道从用户那里获取收益。
用户推荐(Refer):通过提升产品的竞争力,使用户给他的朋友推荐我们的产品。
2. Google’s HEART模型Google’s HEART是一个用来评估以及提升用户体验的模型,它由五个维度组成:Engagement(参与度)、Adoption(接受度)、Retention(留存度)、Task Success(任务完成度)和Happiness(愉悦度)。