思维|浅谈在探索数分之路上“数据思维”培养

编辑导读:在上篇文章中,作者为我们梳理了数据思维在工作上基本应用范围以及如何应用,明白了数据思维的重要性。但是,数据思维要如何培养呢?本文作者分享了一些数据思维的训练方法,以及在面对不同的业务时,如何快速掌握核心数据来指导制定业务策略,希望对你有帮助。
思维|浅谈在探索数分之路上“数据思维”培养
文章插图
我们上篇内容,从广泛的意义上出发,简单梳理了数据思维在工作上基本应用范围以及如何应用,不同行业有不同的情况或者属性,且数据思维也可以说是一种底层的思维模式,所以,说白了就是如何让数据创造价值的思考方式。(详情请看:数据思维怎么用?)那通常情况下,我们在面对数据分析问题时,一些想法以及思维是零散的,需要我们逐步培养锻炼自己数据敏感度以及分析思维,需要将零散的想法形成有条理的分析思路或者思维。
然而,数据思维并不是一日可形成,是需要我们结合日常工作生活来刻意练习,去实践,发现问题、解决问题、总结问题的一个不断积累经验的过程。不过,刚刚入门数据分析还是可以通过一些方法和习惯去训练思维,培养逻辑能力的。本文简单梳理和分享一些数据思维该如何训练,其目的主要给大家提供如何锻炼数据思维的一些建议,以及在面对不同的业务时,如何快速掌握核心数据来指导制定业务策略,仅供参考!
思维|浅谈在探索数分之路上“数据思维”培养
文章插图
一、提升对数据的敏感度首先,养成对数据的深究,知道数据怎么来的?理解数据、理解业务是便于我们进行数据采集及分析溯源,对结论和成果有着一定的数据保证,同时也要判断数据来源的可靠性。
其次,梳理数据指标有哪些维度?理解评估标准,不同业务有不同的关键业务指标,利用思维导图积累相关业务的指标体系,多总结多问为什么;指标体系经常用于数据细分找原因,知道数据构成才能更快地拆分数据,找到异常原因。
最后,了解数据是如何说明业务?找到业务背后的基本逻辑。在数据的日常工作中带入业务思维,从而要知道数据指标在业务中的代表什么,业务数据正常水平是怎么样的,受节假日或者活动营销的影响的数据又是怎么样的,要多对比,结合环比同比明白数据高低的意义。
二、养成对数据指标拆解习惯拆解能力决定了能否有效处理和解决复杂事务,简单来说,就是把一个复杂问题拆解成一个个基础元素,通过研究这些元素,控制和改变基本的元素进而解决复杂的问题。
1. 结构化拆解简单地说,就是按照各不同维度进行拆分,定位当前问题,从问题核心出发拆解影响因素,最终确定验证角度。再通过指标、公式、模型的方式找到验证影响因素的量化标准。比如销售额下滑了,销售额=销售数据*单价,拆分后的结果比拆分前的清晰得多,就可以区分是线上销售下降还是线上销售下降,还可以进一步发现是具体某一个渠道下滑,这样分析更具针对性。如图:
思维|浅谈在探索数分之路上“数据思维”培养
文章插图
2. 流程化拆解简单地说,用户行为路径所要经过的核心流程步骤,用户在流程的走向过程中会逐渐的减少。梳理各流程环节涉及复杂业务过程关键业务的节点,而漏斗图是对业务流程最直观的一种表现形式,并且也最能说明问题的所在。比如获客就是一个链路比较长的业务场景,涉及到活动曝光、客户点击、客户意愿、填写信息、客服回访、客户下载、激活、注册、下单等一系列业务环节,通过漏斗图可以很快发现业务流程中存在问题的环节,确定业务瓶颈。如图: