变量|一次风控联合建模,我总结出了这些

编辑导读:如今,银行和互联网大厂的和合作越来越频繁。其中,一项重要的合作是联合建模。本文作者根据自己的一次风险联合建模的经历,从中总结出一些问题,希望对你有帮助。
变量|一次风控联合建模,我总结出了这些
文章插图
最近雷帅慢银行着实愁坏了,行内消费信贷业务新增客户越来越少,活跃度也越来越低了。疫情长期结束不了,消费下滑经济下行,监管持续趋严,资产规模和质量都开始面临很大的增长压力。
雷帅慢银行寻思,这么下去不是办法,形势再差,也要人为,得主动出击去找优质资产。
怎么找,流量和质量都掌控在互联网大厂手上。
于是,找到了雷帅快大厂,你把优质用户给我,我们来做款产品,一起分润。
互联网公司都是在做流量变现,雷帅快大厂就爽快同意了。
win-win。
那快大厂怎么把优质用户给慢银行呢?
快大厂虽然自己也做消费信贷业务,也有内部风险评分。但风险是由用户和产品决定的,慢银行想要的是适合他们产品的优质用户,快大厂的优质用户虽然不错,但不是最优。
这就是合作中最重要的一环,联合建模。
慢银行提供一批有风险表现的用户给快大厂去匹配特征,风险是慢银行的,特征是快大厂的。
由慢银行同学去建模,有了模型之后就可以对快大厂的流量做精准风险评估了。
一般来说,谁用模型谁建模。
于是慢银行和快大厂分别成立了一个小组,两方各自指定了个负责人,专项对接该模型开发工作。
一、立项会议小组成立之后,马上开了一次语音会议,聊这个模型怎么建。
两方负责人先拉了个微信群,把慢银行和快大厂这次联合建模相关的人员都拉进去了。
慢银行一堆问题就跟机关枪一样发射了,

  • 你们有多少特征,能回溯到什么时候?
  • 需要用什么主键去匹配特征?
  • 你们的数据能不能传给我们,我们直接在行内建模?
  • 我们要建xgb模型,你们xgb模型怎么部署?
  • ……
快大厂不爽了,你们急个毛线,
  • 我们数据多着呢,近两年都可以回溯,身份证和手机号做主键,我们上千个特征不出库,我们准备好电脑和建模环境,你们带着标签过来。
  • 你们准备多少样本建模,最好多带点?
  • 你们自己怎么定义标签的?
  • 你们准备建几个模型,输出几个字段?
一来二回,都觉得对方不给力。
慢银行嫌快大厂特征数据不出库,还要他们派模型同学驻场建模。
快大厂嫌慢银行能带出的样本太少了,建模效果不好的话还要怪数据质量。
但好歹,一些事情还是确定下来了。
慢银行指定了一个模型同学(慢A),快大厂也指定了个同学(快B)。
然后,慢A去准备建模需要的10w样本,走申请流程带出。
快B就去准备了两台电脑,搭建建模环境。
二、数据准备慢A同学在慢银行苦心经营,找了许多人开了许多会,终于确定了如何选取这10w样本。
又潜心写了几行代码抽取这些样本,还请同事帮忙review一下这几段sql。
然后走起了漫无边际的审批流程,匹配加密的主键,样本出库等。
这个时候的慢A觉得自己是张骞。
此时,快B同学在快大厂申请了两台旧电脑,确保了无网络访问权限,然后安装了下必备的Python包。
然后开始准备怎么做都有问题的特征,从特征库里选择了几张合适的稳定有效的特征表,开始做一些脱敏处理。
变量的值要脱敏,例如分段处理,变量的含义也要做脱敏,巴不得改名为变量1、变量2……。
无所不用其极,这个时候的快B觉得自己是SB。