分析|数据产品的竞品分析怎么做?( 二 )


产品稳定运营阶段,要周期地关注行业新方向,竞品新功能新动态,保持产品始终创新的能力。
还是以BI为例,tableau、帆软等传统的BI发展多年,QuickBI、观远数据在智能应用有更多的尝试,BI和AI结合的思想是不是可以学习和借鉴呢。
分析|数据产品的竞品分析怎么做?
文章插图
2. 找竞品用户端的产品人人都可以使用,在应用商店某一产品时,相关的竞品就会出现在搜索结果中,一方面是产品类别属性相近,另一方面是竞争对手之间通过SEO或SEM策略进行搜索结果的干预,直接下载体验就可以了。数据产品相对封闭,公开资料获取比较难,常用的信息获取渠道有:
行业研究报告与自媒体:如艾瑞咨询、易观智库、企鹅智库研究报告,36氪、虎嗅等科技媒体
搜索引擎:内部产品往往会起各种上古风、潮流风的名字,比如盘古、伏羲之类的,把产品核心的定位和目标进行抽象,用通用的大数据领域的术语进行检索,可以获取商业化数据产品的信息。例如,搜索用户画像,会出现一些商业化做精准营销或CRM相关的产品。
同行信息输入:前辈交流或加入数据产品经理交流群,群里分享交流数据产品或行业趋势,获取信息背书。
分析|数据产品的竞品分析怎么做?
文章插图
3. 深体验数据产品竞品分析的难点在于很多隐藏的业务逻辑无法直接看到,不能停留在体验表面的产品功能上,需要综合结合多种方式搜集资料,全面体验产品功能。
产品试用:注册商业版产品,进行产品试用,对产品主体功能架构和设计流程有个宏观的认知。
帮助文档:通过官方网站,查阅帮助文档,了解功能细节的设计原理或思路,商业化产品的帮助文档一般是直接面向客户,内容会非常完整,体验过程的一些疑问可以可能在帮助文档中找到答案。
邀请销售人员进行沟通交流,把体验过程以及帮助文档无法覆盖的问题,向销售人员或对方的产品设计者请教。准备工作做好了,哪些方法可以帮助你更加深刻、全面地得出更有洞见的可执行的分析结论呢?这三个经典的分析模型,希望你可以掌握。
1)产品认知画布
C端产品商业模式决定产品调性,常用商业画布梳理产品竞争形势,而数据产品,一般是基于产品功能或流程解决数据化运营过程的效率、成本问题。利用产品认知画布,可以更深刻地认识竞品。
下面以淘宝商家端的数据产品生意参谋为例,看如何构建数据产品的认知画布。
① 用户
产品的用户有哪些,核心用户、覆盖用户分别是什么岗位或角色。生意参谋是面向淘宝成百上千万的卖家的数据产品。核心用户是有数据意识希望利用数据提升运营效率的卖家。
② 场景
用户什么场景下会用到该产品呢,他们日常工作的流程是怎样的。商家终极诉求是可以卖更多的货,挣更多的钱。除了常规的维护商品、处理订单、跟进售后外,他们希望可以利用数据来驱动店铺优化运营策略,如商品名称优化、流量获取、调整库存,以及了解行业动态等。
③ 痛点
没有生意参谋之前,商家运营遇到了哪些痛点?不知道店铺哪些产品热销,“靠天吃饭”等着用户进店,不同渠道的流量及进店到加购到成单转化率怎么样、用户通过什么关键词进入到的店铺的完全不知道。同行中,近期热销的商品是什么,补货上新靠经验。
④ 需求
这些痛点反映的需求有哪些呢?实时了解店铺经营情况,如进站UV、订单数、交易额,退款订单数、待发货订单数等。希望了解店铺流量来源,以进行流量运营策略的优化,希望了解热销与滞销商品,获悉行业动态,调整补货策略。还希望可以知道店铺用户画像,对用户进行客户关系维护和持续运营……