初中数学中 什么是命题


什么是命题(初中数学中)初中数学课程中,初步涉及到命题这一知识点,什么是命题呐,如何来判定一个命题的真假,命题有哪些分类,下面我就为大家来介绍一下:

初中数学中 什么是命题

文章插图
首先我们来了解命题的概念:
判断一件事情的语句,叫做命题 。
命题的概念包括两层含义:
(1)命题必须是个完整的句子;
(2)这个句子必须对某件事情做出判断 。
什么是公理:
人们在长期实践中总结出来的得到人们公认的真命题,叫做公理 。
那什么又是定理:
通过真命题(公理或其他已被证明的定理)出发,经过受逻辑限制的演绎推导,证明为正确的结论的命题或公式,例如“平行四边形的对边相等”就是平面几何中的一个定理 。
一般来说,在数学中,只有重要或有趣的陈述才叫定理,证明定理是数学的中心活动 。相信为真但未被证明的数学叙述为猜想,当它被证明为真后便是定理 。它是定理的来源,但并非唯一来源 。一个从其他定理引伸出来的数学叙述,可以不经过证明成为猜想的过程,成为定理 。
如上所述,定理需要某些逻辑框架,继而形成一套公理(公理系统) 。同时,一个推理的过程,容许从公理中引出新定理和其他之前发现的定理 。
在命题逻辑中,所有已证明的叙述都称为定理 。
【初中数学中 什么是命题】经过长期实践后公认为正确的命题叫做公理,用推理的方法判断为正确的命题叫做定理 。
初中数学中 什么是命题

文章插图
命题的有哪些分类:
(按正确、错误与否分)分为真命题(正确的命题),假命题(错误的命题),
所谓正确的命题就是:如果题设成立,那么结论一定成立的命题 。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题 。
四种命题该如何区分:
1.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题 。
2.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题 。
3.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题 。
初中数学中 什么是命题

文章插图
然后我们来了解四类命题之间的相互关系:
1.四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆 。
2.四种命题的真假关系:
①两个命题互为逆否命题,它们有相同的真假性 。
②两个命题为互逆命题或互否命题,它们的真假性没有关系(原命题与逆否命题同真同假,逆命题与否命题同真同假)
定理结构:
定理一般都有一个设定——一大堆条件 。然后它有结论——一个在条件下成立的数学叙述 。
通常写作「若条件,则结论」 。用符号逻辑来写就是条件→结论 。而当中的证明不视为定理的成分 。
逆定理:
若存在某叙述为A→B,其逆叙述就是B→A 。逆叙述成立的情况是A←→B,否则通常都是倒果为因,不合常理 。若某叙述是定理,其成立的逆叙述就是逆定理 。
若某叙述和其逆叙述都为真,条件必要且充足 。若某叙述为真,其逆叙述为假,条件充足 。若某叙述为假,其逆叙述为真,条件必要 。
初中数学中 什么是命题

文章插图
以上是关于命题的一些讲解,希望大家能够仔细阅读,让我们一起来学习数学,一起努力,一起加油 。