量子计算这样的前沿领域 , 自然少不了NVIDIA的身影 , 是时候开始打造未来的混合量子计算机了 。
如今 , 我们拥有可不抗拒的动机、清晰明确的道路 , 并且打造混合量子计算机所需的关键组件也已备齐 。
量子计算有望攻破当今面临的一些严峻挑战 , 推动从药物研发到天气预报等各项工作的发展 。 简言之 , 量子计算将在未来的 HPC 中发挥巨大作用 。
当今的量子模拟
创造未来并非易事 , 但开启这条道路所需的工具已经准备就绪 。
【飞利浦·斯塔克|量子计算是否会因为量子算法开发而提速?】当今的超级计算机模拟量子计算作业 , 其规模和性能水平是现有的相对较小且易出错的量子系统无法达到的 , 这是我们向前迈出的第一步 。
数十家量子组织已经在使用 NVIDIA cuQuantum 软件开发套件 , 在 GPU 上加速其量子电路模拟 。
最近 , AWS 宣布在其 Braket 服务中提供 cuQuantum 。 它还在 Braket 上展示了 cuQuantum 如何在量子机器学习工作负载上实现高达 900 倍的加速 。
cuQuantum 现已能够在主要的量子软件框架上实现加速计算 , 包括 Google 的 qsim、IBM 的 Qiskit Aer、Xanadu 的 PennyLane 和 Classiq 的 Quantum Algorithm Design 平台 。 这意味着这些框架的用户可以访问 GPU 加速 , 而无需再进行任何编码 。
量子驱动药物发现
如今 , Menten AI 开始使用 cuQuantum 来支持其量子工作 。
这家湾区药物研发初创公司将使用 cuQuantum 的 Tensor 网络库来模拟蛋白质相互作用并优化新的药物分子 。 这样做旨在利用量子计算的潜力来加速药物设计 , 该领域与化学类似 , 是公认的率先受益于量子加速的领域 。
具体而言 , Menten AI 正在开发一套量子计算算法(包括量子机器学习) , 以解决治疗设计中需要进行大量计算的问题 。
Menten AI 的首席科学家 Alexey Galda 表示:“虽然能够运行这些算法的量子计算硬件仍处于开发阶段 , 但 NVIDIA cuQuantum 等经典计算工具对于推进量子算法的开发至关重要 。 ”
构建量子链路
随着量子系统的发展 , 下一个重大飞跃是朝混合系统迈进:量子计算机和经典计算机协同工作 。 研究人员都希望这些系统级量子处理器(即 QPU)成为功能强大的新型加速器 。
因此 , 摆在面前的一个重要任务就是将传统系统和量子系统桥接到混合量子计算机中 。 这项任务包括两个主要部分 。
首先 , 我们需要在 GPU 和 QPU 之间建立快速、低延迟的连接 。 这样一来 , 混合系统可使用 GPU 完成其擅长的传统作业 , 例如电路优化、校正和纠错 。
GPU 可以缩短这些步骤的执行时间 , 并大幅降低经典计算机和量子计算机之间的通信延迟 , 而这是当今混合量子作业面临的主要瓶颈 。
其次 , 该行业需要一个统一的编程模型 , 其中包含高效易用的工具 。 我们在 HPC 和 AI 方面的经验使我们和用户了解到了固态软件栈的价值 。
适合作业的工具
当前 , 为了对 QPU 进行编程 , 研究人员只能使用相当于低级组装代码的量子 , 不是量子计算专家的科学家无法使用这种代码 。 此外 , 开发者缺乏统一的编程模型和编译器工具链 , 因此无法在任何 QPU 上运行工作 。
这种现象亟待改变 , 而且我们相信将会有所改变 。 在 3 月份的一篇博客中 , 我们讨论了为构建更出色的编程模型而开展的一些初步工作 。
为了高效地找到量子计算机加速工作的方法 , 科学家需要轻松地将其 HPC 应用的一部分先移植到模拟版 QPU , 然后再移植到真正的 QPU 。 这个过程需要一个编译器 , 使科学家们能够以熟悉的方式高效工作 。
- 氢原子的能量为什么是量子化的?《张朝阳的物理课》求解氢原子
- 飞利浦|旗舰降噪中的HiFi级听感——飞利浦FIdelio T1评测
- 天壤韩定一:大模型小样本数据,AI驱动金融数字化|量子位·视点
- 飞利浦·斯塔克|宝华韦健P3回音壁音响评测:重新定义家庭全景声!
- 飞利浦·斯塔克|AMD更正AM5平台功率描述,处理器的TDP是170W,插座功率230W
- 飞利浦·斯塔克|OPPO Reno8 Pro+上手体验:除了颜值出众外,性能也很能打
- 飞利浦|飞利浦Fidelio音响电视58PUF8205评测:挖掘影音极限的观影利器!
- 飞利浦·斯塔克|矿卡基本归零 NVIDIA更重视游戏玩家了:改善显卡供应
- 以NeRF为代表的神经渲染技术高速发展|梦晨发自凹非寺量子位|神经渲染技术高速发展
- 量子计算|美国:不许中国在人工智能、量子计算、5G、6G等先进技术领域掌握规则