节能1000倍!仿人脑神经芯片跑AI模型竟然这么省电
作为如今最成功的人工智能算法,人工神经网络,可以松散地模拟了人脑中真实神经网络的复杂链接。 不过与人脑的高能效相比,实在是太费电了。
于是,神经拟态计算应运而生,这种技术更贴近模仿了人脑的运作机理与物理定律。 然而,由于器件失配难题,模拟神经元的质性会与设计略有不同,且电压和电流水平在不同的神经元之间也有差异。 相比之下,AI算法的训练则是在具有完全一致的数字神经元的计算机上完成的。因此,实际在神经拟态芯片上运行时,经常会出现「水土不服」的问题。2022年1月在美国国家科学院院刊上发布的一篇论文,揭示了绕过此难题的一种途径。
文章插图
论文链接:https://www.pnas.org/content/119/4/e2109194119
由瑞士弗雷德里希米歇尔生物医疗研究所的研究者弗里德曼·曾克,与德国海德堡大学的研究者约翰内斯·希密尔联合组成的团队,在脉冲神经网络这一类型的AI算法上获得新进展。 脉冲神经网络使用模仿人脑中的特色脉冲交流讯号,可以在神经拟态芯片上运行,学会如何代偿芯片中的器件失配。 此论文是AI迈向神经拟态运算的显著一步。
模拟神经网络与现有AI运行设备不同,神经拟态计算并不将数据在长间隔距离的CPU与存储卡之间搬运。 神经拟态芯片设计模仿果冻般人脑的基础架构,将计算单元(神经元)置于存储单元(连接神经元的突触)旁边。 为了让设计更像人脑,研究者将神经拟态芯片结合模拟计算,如此能像真实神经元一样处理持续不断的信号。
文章插图
这样产出的芯片,与现下依赖处理0与1的二元基础信号的数码计算模式和架构,有显著不同。 以人脑作为设计指南,神经拟态芯片承诺有朝一日终结AI等大数据量运算工作的高耗能。不幸的是,AI算法在神经拟态芯片的模拟版本上运行效果不佳。 这是因为器件失配的缺陷:在生产过程中,芯片里模拟神经元的微型组件大小出现不匹配。 由于单个芯片不足以运行最新的AI训练过程,算法必须在传统计算机上进行预训练。 但之后将算法转输到芯片上时,一旦遇上模拟硬件不匹配的问题,算法就两眼一抹黑了。
文章插图
基于人脑设计的计算模式是模拟计算而非数码计算,这点差别微妙而关键。 数码计算只能有效呈现人脑脉冲信号的二元性方面:脉冲信号作为一道冲过神经元的电信号,状态具有二元性,要么输出了,要么没输出,这就是0与1的区别。
文章插图
不过事实上因为人脑细胞中有电压变化,当细胞内电压超过比细胞外电压高到一定程度的特定阈值,就会输出脉冲。 如此一来,脉冲是在一定时段内持续不绝地输出的,而且神经元决定输出脉冲的状态也是持续不绝的,这其实是一种模拟信号的状态。 瑞士苏黎世联邦理工学院的神经拟态工程研究者夏洛特·弗伦克尔说:「模拟态体现了人脑运算模式的核心之美。成功效仿人脑的这一关键方面,将是神经拟态运算的主驱动因素之一。」 2011年,海德堡大学的一组研究人员开始开发一种既有模拟态又有数码态的神经拟态芯片,为神经科学实验模拟大脑。
【 节能1000倍!仿人脑神经芯片跑AI模型竟然这么省电】
- 成都|华为:节能+智能,助力打造成都智算中心
- 模块化|华为:节能+智能,助力打造成都智算中心
- 春招|台积电成立35周年:当初买股票如今能赚1000倍
- 代工|台积电成立35周年,张忠谋:一开始就投资如今能赚1000倍
- 代工|台积电35周年:年赚千亿、人均年终奖28万,当初买股票能赚1000倍
- 台积电|台积电成立35周年:当初买股票如今能赚1000倍
- emc|达实智能回应涨停:数据中心节能业务早有涉及曾有项目PUE值小于1.25
- 何小鹏|何小鹏:雷军投资他大赚1000倍,马云投资他300亿打水漂
- 元宇宙|元宇宙冰墩墩火了!NFT盲盒价格暴涨近1000倍:全球只有500个
- 财政部|何小鹏:雷军投资他大赚1000倍,马云投资他300亿打水漂