科研|科研团队如何探索商业化落地?这家语音AI公司用十年试验打了样( 三 )


接着就是硬件能力。
他们遇到了史上最大的挑战之一,智能芯片。
一则团队内部没有相应的硬件人才,二则芯片研发成本高昂,一旦失败对创业公司来说无异于釜底抽薪。
这时候云知声严谨求证的科研作风再一次凸显,经过讨论他们决定不要一上来就做芯片。
而是先以通用芯片模组切入,验证他的商业应用价值和技术可行性。
经过两年打磨,以通用ARM芯片为基础,支持远场降噪和识别的语音交互模组在格力高端空调上出货。
当时在业内取得积极反响,也获得了2016年的智能家居AWE“艾普兰核心奖”。梁家恩回忆称,客户非常满意,但通用模组“价格贵”,成为了智能语音交互模组走向主流机型的主要障碍,芯片自研也就成为题中之义。
2016年,云知声就正式启动了芯片的研发。
2018年4月,中兴事件爆发一个月后,云知声一次流片成功,发布了第一款AI语音芯片——雨燕,让业界眼前一亮,该芯片后来获得了“吴文俊人工智能科技进步奖”,当时很多公司才开始意识到 AI 边缘计算芯片的重要性。
科研|科研团队如何探索商业化落地?这家语音AI公司用十年试验打了样
文章插图
除了“云端芯”全栈技术能力拓展,云知声还实现了底层超算平台的全面升级。
在启动芯片研发同一年(2016),当时还有个行业大事件:AlphaGo击败李世石震惊全球,也将深度学习和AI技术推到了全民关注的风口浪尖。
科研|科研团队如何探索商业化落地?这家语音AI公司用十年试验打了样
文章插图
这件事被梁家恩看在眼里,不只是因为深度增强学习算法的精妙只是其一,但当时最让他好奇的点,是它如何通过调度上千块GPU去做如此高复杂度的深度增强学习计算的?
放在国内,当时没有任何系统可以干成这件事。
为了寻找答案,梁家恩二话不说就买机票前往硅谷调研。
在硅谷巨头超算专家的启发和支持下,经过近一年的研发和优化,实现了支持上千块GPU同时调度的大规模机器学习的超算平台,称为Atlas(希腊神话中的大力神)。
云知声以Atlas超算平台为共享基础支撑,加速了云知声AI技术体系的演进速度,迅速拓展端到端语音合成、人脸识别、机器翻译等技术能力,并取得语音合成BC2020评测第一、机器翻译WMT2018评测前三等行业前列成绩。
直到2018年,BERT、GPT-3等大规模预训练语言模型的出现,超算平台的价值才得到行业的充分认识。而云知声则依托Atlas超算平台和“云端芯”战略,形成了全栈AI技术及产品化能力,内部有着更为形象的表述:AI六边形能力:
科研|科研团队如何探索商业化落地?这家语音AI公司用十年试验打了样
文章插图
一是算法方面,确保对主流技术架构的密切跟进,通过全栈AI技术打造整体智能解决方案,并通过工程优化降低部署和交付成本;
二是数据方面,以大规模训练为基础,解决小样本的快速迁移问题,并建立高效真实数据迭代闭环,提升模型精准度及应用适配能力。
以全栈AI技术及产品化能力为依托,云知声能高效调度研发资源,在更多场景中快速探索和验证行业应用,包括车载、医疗、教育等领域。
云端芯从战略到现实,不光意味着他们对技术产业的预判再次成功,也更为云知声下一步深入行业、迭代发展奠定了基础。
U+X:约纵连横,深耕两大业务在全栈AI能力构建和应用验证后,在云知声内部已经达成新的共识:
要真正深入行业了解业务Know-how,少不了与行业玩家联合互补,跟他们共同打造出真正解决问题、创造价值的整体智能解决方案。
这时候,也就来到了云知声新的战略阶段:U+X。