隐私计算|浙江大学求是讲席教授任奎:隐私计算的前沿进展( 二 )


文章插图

安全多方计算是密码学研究的一个重要分支,通俗定义是:为解决一组互不信任的参与方之间在保护隐私信息以及没有可信第三方的前提下协同计算问题而提出的密码协议与理论框架。
狭义的安全多方计算主要包括以下两种实现方式:
1. 针对布尔电路以姚氏混淆电路方式实现的两方协议;
2. 针对布尔电路或者代数电路以秘密分享方式实现的两方或者多方协议。
在广义上,全同态加密、可信硬件以及联邦学习都可以看做安全多方计算的技术框架。
在应用程度上,安全多方计算可以分为通用安全多方计算,可以支持大多数计算任务,实现常用基本计算算子协议,例如加、乘、比较、矩阵运算,将具体计算任务分解到基本算子;专用安全多方计算,以“高效实现专用实用计算任务”为目标,可以针对专用计算任务和应用场景定制多方安全计算协议,常见的专用协议包括隐私保护求交集、隐匿查询、零知识证明、联合建模等等。
隐私计算|浙江大学求是讲席教授任奎:隐私计算的前沿进展
文章插图

目前,业界针对安全多方计算开发出了各种产品,但如何进行比较?我认为可以通过安全假设、性能以及安全保障三个维度进行评测。例如在安全假设中,采用的是同步、异步、半同步中的哪种网络假设?敌手模型采用的是半诚实、恶意还是隐匿作恶?
而在安全保障中,应该考虑隐私性、正确性、公开可验证性、健壮性以及公平性等六个角度。此外,在“前提”和“保障”之间,技术产品实现的性能如何?例如参与方数据是否平衡、参与节点算力是否对称等等。
国家也开始积极的探索,例如信通院提出《隐私计算多方安全计算产品性能要求和測试方法》,通过基础运算、联合统计、盈利查询、安全求交等等维度考虑产品性能。
隐私计算|浙江大学求是讲席教授任奎:隐私计算的前沿进展
文章插图

目前在学术界,安全多方计算也在稳步发展。在基于混淆电路的安全多方计算前沿协议层面,如上图所示,针对参与方数量、门限、敌手模型以及入侵假设,都研究了对应的“方法”。
隐私计算|浙江大学求是讲席教授任奎:隐私计算的前沿进展
文章插图

【 隐私计算|浙江大学求是讲席教授任奎:隐私计算的前沿进展】在基于秘密分享的安全多方计算前沿协议层面,已经有大量的开源安全多方计算框架,如CrypTFlow、 PySyft、 Rosetta等支持机器学习的框架;MP-SPDZ、 SCALE- MAMBA等通用框架。前者对性能要求更高,后者认为安全是“第一要务”。
隐私计算|浙江大学求是讲席教授任奎:隐私计算的前沿进展
文章插图

在零知识证明领域前沿协议层面的进展如上图所示,在加速、计算量、证明大小等方面各有千秋。
隐私计算|浙江大学求是讲席教授任奎:隐私计算的前沿进展
文章插图

在隐匿查询前沿协议层面,目前最好的技术属于微软和谷歌。它们完成百万级的查询,大概只需要2秒~4秒。在安全求交前沿协议层面,考虑150Mbps带宽的情况下,也能达到10秒~30秒的百万级查询。
隐私计算|浙江大学求是讲席教授任奎:隐私计算的前沿进展
文章插图

在联合建模层面,Sp’17和PETS’20虽然在性能的表现不是最好,但是在安全层面却是最严谨的,都能保证只泄露最终模型,不泄露中间结果。
隐私计算|浙江大学求是讲席教授任奎:隐私计算的前沿进展
文章插图

目前,浙江大学也在安全多方计算领域开展了一些工作。例如研究统一MPC隐私性度量标准;研究统一安全假设的评分标准与各维度的权重;研究统一安全保障的评分标准与各维度的权重;研发安全多方计算靶场;完善安全多方计算性能测评标准与平台等等。