G瑞莱智慧徐世真:隐私计算商业化落地面临四大挑战, mpc( 三 )


(1)从应用场景来说,MPC更适合数值类简单计算和查询求交类特定计算;联邦学习主要是针对机器学习的场景,计算逻辑比较复杂,不是简单计算;TEE更适合通用计算场景,比如有时候想跑一个完整的Tensorflow或数据库应用,用前两个比较难,用这个比较合适。
(2)从技术优势的角度来说,简单的分布式统计/查询求交场景下,MPC比较成熟,但复杂计算情况下受限于通信情况,还是不太成熟;联邦学习,保证数据不出库的情况下进行复杂的机器学习、建模,大部分情况下的计算性能还是尚可的,但是在一些特别大量的数据下,密码学计算还是主要的限制;TEE是集中式的数据处理,易开发,它的算法/框架生态是最好的。
(3)从技术劣势的角度来说,MPC的通信量大,支持简单的计算逻辑可行,但计算逻辑一旦复杂,就耗费一定时间,比如一个Resnet,2-party,一张图片的inference可能需要10分钟以上,在实际落地中是完全不可接受的;联邦学习主要是面向AI建模场景,但有的场景就是想简单的求和、求最大值,这时候联邦学习就不是理想方案;TEE主要劣势是依赖于硬件厂商的硬件可信性,和用户是否接受数据集中式处理。
目前隐私计算这一赛道比较火热,但是还有很多问题没有解决。比如隐私计算解决的是数据流通安全性的问题,分离了数据所有权和使用权,避免流通过程中的资产损失,但它没办法解决端到端的安全问题。很多企业更希望获得的是端到端安全保障,比如数据存储、数据采集怎么做,以及数据流通前后的权属该怎么定,隐私计算在解决这样的全链路安全问题上,还面临着一系列挑战。所以,隐私计算仅仅是企业合规建设中的一个技术环节,整体上还是需要在法律法规的指导下进行。
还有数据流通的意愿问题,如果企业只是把隐私计算当成企业合规建设的成本项,那数据交易也很难推行下去。徐世真认为,只有深度结合AI,使业务方从隐私计算中获益,才能把隐私计算从成本项变成营收项,保证企业有可持续的意愿度,保证数据价值闭环操作。
五、编译级隐私计算平台RealSecure,打通落地“最短链路”
据了解,瑞莱智慧推出的隐私计算平台RealSecure是业内首个编译级隐私计算平台,自主研发联邦AI编译器,实现以数据流图变换的形式实现机器学习算法到联邦机器学习算法的自动转换,无需针对每个参与方编写特定的计算逻辑,适配多种机器学习算法。数据流图的形式可直观展示加密过程,底层执行的计算公开可审计,深度结合密码学证明,支持完整证明联邦算法协议的安全性。
同时,该平台创新性的引入了全同态加密技术,将密码设计中的批次处理和机器学习中以Tensor为最小数据单元的场景相结合,在部分机器学习算法中,该平台相对于主流开源框架有40倍以上端到端的速度提升。
基于RealSecure平台,瑞莱智慧推出了“平台+数据+服务+场景”的一体化解决方案,基于这套方案实现多个场景案例。
比如某家头部银行的资产跃迁分析案例。该银行希望统计集团子公司中交集客户总资产,定位发生资产跃迁客户,获取高净值客户名单,并分析资产跃迁潜在原因及差异化潜在高净值客户的营销策略。但是各个子公司不愿意透漏各自的数据详情、全过程各个参与方不能获取或者泄露各自数据详情。通过与瑞莱智慧合作,银行、保险子公司、证券子公司分别部署隐私保护计算平台(RealSecure)节点,基于RSC的PSI(隐私求交)及MPC(多方安全计算加法)技术,在保护各方数据隐私的前提下,统计集团子公司的交集客户总资产,并定位交集客户中的资产跃迁,获取高净值客户名单,根据统计结果制定差异化高净值客户营销策略。