google|与Jeff Dean聊ML for EDA,最佳论文花落伯克利:EDA顶级会议DAC 2021 精彩回顾( 三 )


为了解决这一缺陷,相比于多数在gate-level才进行上锁的工作,本文提出在更高层的high-level synthesis的resource binding步骤中,利用架构层面的知识来对整个IP进行上锁。结果表明,通过对binding与上锁进行协同设计,这种方法获得了上锁效果的巨大提升。
另一篇获得最佳论文提名的是UT Austin与Intel合作的"DNN-Opt: An RL Inspired Optimization for Analog Circuit Sizing using Deep Neural Networks"。
google|与Jeff Dean聊ML for EDA,最佳论文花落伯克利:EDA顶级会议DAC 2021 精彩回顾
文章插图

论文链接:https://arxiv.org/pdf/2110.00211.pdf
文章提出了一种高效的对于模拟电路进行gate-sizing优化的方法。借鉴于强化学习方法,作者同时训练了两个深度学习模型,其中critic-network负责评估每一次gate-sizing的效果,而actor-network负责选择效果最好的sizing方式。但这种方法依然是监督式学习而并不是强化学习。
另外为了减小搜索空间,文章提出了分析每种优化操作对于最终目标的影响(sensitivity)。对于影响小于阈值的优化操作不进行搜索。实验证明,无论在是较小的电路设计还是大规模工业界的电路设计中,本文的方法都能大幅减少需要的搜索次数,对应更少的设计时间。

本文作者是杜克大学博士生谢知遥。他以第一作者获得了今年的MICRO最佳论文。他将在2022年加入香港科技大学并正在积极寻找ML for EDA方向的博士学生。欢迎有兴趣的同学发送邮件至zhiyao.xie@duke.edu
雷峰网