DeepMind让AI在量子水平描述物质!自然:化学领域最有价值技术
明敏发自凹非寺
量子位报道|公众号QbitAI
现在 , AI能在量子层面精准描述物质了!
在最新一期《科学》杂志上 , DeepMind构建的神经网络可以预测分子内电子分布 , 从而计算出分子特性 。
文章图片
这距离DeepMind登上《Nature》封面、解决两大数学难题 , 仅仅过去了一个星期 。
而这一突破对于AI、化学、材料学领域都有重要影响 。
一方面 , 这意味着深度学习在准确模拟量子层面物质上大有前景;另一方面 , 这对于在纳米尺度探索材料、医学、催化剂等物质都具有重要影响 。
DeepMind还表示 , 他们将开源这一成果给全球科研人员用!
怪不得网友会发出感叹:
DeepMind——YYDS!
文章图片
《Nature》称这将是化学领域中最有价值的技术之一:
文章图片
用MLP解决电子相互作用问题
这一次DeepMind解决的问题是密度泛函理论(DFT)有关 。
DFT是一种通过计算分子内电子密度来研究多电子体系电子结构的方法 , 它可以在量子水平上描述物质 ,
通过近似的方法 , DFT先把复杂的电子相互作用问题简化为无作用问题 , 再将所有误差另放在一项中 , 对误差单独分析 。
在过去几十年中 , 它已经成为预测化学、生物学和材料中各种系统特性时最常用的方法之一 。
但目前这一方法仍旧存在一定局限性 。
文章图片
一方面 , 它存在离域化误差 。
在DFT计算中 , 泛函会找到能量最小化时的电子构型来推断分子的电子密度 。 由此函数误差就会带来电子误差 。
大多数已有密度泛函都会错误地将电子密度分布在几个原子或分子上 , 而不是将其确定在单个分子或原子周围 。
文章图片
△左图为传统方法 , 右图为DeepMind提出方法
另一个主要误差来自于自旋对称性破坏 。
如果描述结构中的化学键断裂时 , 现有的泛函会给出一种自旋对称性被破坏的构型 。
但是对称性对于研究物理、化学构型有着重要作用 , 所以当前方法的这一缺陷也就造成了很大的误差 。
文章图片
在对比中可以看出 , PBE方法打破了自旋对称性 。
由此 , DeepMind提出了一种神经网络——DeepMind2021(简称DM21) 。
文章图片
这一框架使用了多层感知器(MLP) , 它能映射一组输入向量到一组输出向量 。
在向一个权值共享的MLP中输入自旋指数电荷密度等精密化学数据后 , 它可以预测局部电荷密度的增强值和局部能量密度 。
将这些数值整合后 , 再向函数中增加色散校正DFT 。
经过训练后 , 就可以在自洽计算中部署这一模型 。
在具体数据对比中 , DM21的误差值都低于传统方法 。
文章图片
也就是说 , DM21可以精准地模拟复杂系统 , 如氢键链(hydrogenchains)、带电荷DNA碱基对和双自由基体系的过渡态 。
实验结果显示 , 在不同基准(GMTKN55BBBQM9)上 , DM21的绝对误差值均小于普通方法 。
- 苹果|库克压力确实大,在众多国产厂家对标下,iPhone13迎来“真香价”!
- 设计师|UI设计岗位薪资怎么样
- 5G|华为利用5G毫米波发现园区入侵者,这让美国5G联盟情何以堪
- ios|华为迎来新里程碑,在新领域旗开得胜!
- 打脸!华为在美国,用专利把英特尔、苹果、微软、高通打败了
- 自驾游|儿子将母亲忘在服务区 开出40公里仍不知 网友:心大
- 鸿蒙os|麒麟9000再度发力,华为高精度导航让你出行不迷糊
- 百度|传英伟达加大GeForce RTX 3050供应力度,大量供货将在春节后到来
- DeepMind首席科学家:比起机器智能,我更担心人类智能造成的灾难
- 都匀一中|任正非新春致母校信曝光:现在虽是冬天,但春天很快就会到来