机器学习|AI技术改善农业的十种路径,未来可期!( 二 )
文章插图
图:事实证明,无人机已经成为一种极为可靠的平台,能够收集关于特定肥料、灌溉方式与农药处理方法对作物实际产量产生的影响数据。
3. 产量映射是一项农业技术,通过监督机器学习算法,从大规模数据集内查找模式并实时了解不同模式间的正交性,由此为作物生产规划带来无法衡量的重大价值。
时至今日,我们已经能够在种植周期开始之前,就大致判断出特定田地的潜在产量。通过将机器学习技术与3D映射、传感器数据以及基于无人机的田间颜色数据相结合,农业专家即可快速预测出特定作物在潜在土壤条件下的产量。这些由无人机捕捉到的数据集准确且可靠。下图所示,为产量映射分析得出的结果:
文章插图
图:在监督与无监督机器学习算法的加持下,农业专家得以确定如何最大程度提升田地产量。
4. 联合国、各国际机构及大型农业项目,纷纷将无人机数据与现场传感器相结合,借此改善害虫管理能力。
通过将无人机的红外热像仪数据与能够监测植物相对健康水平的传感器结合使用,农业管理团队可以在AI的帮助下抢在虫害发生之前做出预测及识别。目前,联合国就与普华永道合作评估亚洲各棕榈种植园中潜在的有害生物侵染问题,如下图所示:
文章插图
图:联合国将现场传感器与无人机数据结合起来,用以调优机器学习算法、帮助农民从种植园中获取更高产量。
5. 如今,农业工人严重短缺,使得基于AI与机器学习的智能拖拉机、农用机器人以及其他智能机械,成为偏远地区农业种植的首选方案。
目前,大型农业企业找不到足够的员工,只能依靠机器人技术收取数百英亩土地上的农作物,这同时也给偏远地区的安全态势带来积极推动。通过对自主式机器人设备进行编程,它们能够为农作物播撒肥料、由此降低运营成本并进一步提高田地产量。目前农业机器人的复杂度正在迅速提高,下图所示为VineScout机器人在运作过程中的仪表板信息。
文章插图
图:事实证明,农业机器人技术能够快速捕捉宝贵数据,借此调优AI与机器学习算法,从而进一步提高农作物产量。
6. 通过消除一系列传统阻碍,新兴技术有望向市场交付更新鲜、更安全的农作物,同时极大改善农业供应链的可追溯性。
2020年爆发的新冠疫情加快了在农业供应链中部署跟踪与溯源功能的速度,2021年这股趋势也仍将稳定存在。这种拥有良好管理的跟踪系统能够提供更强大的可见性,全面提升对供应链的整体控制能力,借此有效降低库存。最新跟踪系统甚至能够区分入库货物的批次、所属项目并实现集装箱级别的细粒度记录。此外,随着RFID与物联网传感器在整个制造流程中的快速普及,目前大多数先进跟踪系统也开始依靠先进的传感器以获取关于每批货物的更多状态信息。沃尔玛方面就在推动一项试点,旨在研究如何利用RFID简化配送中心的货品跟踪性能,并将效率提升至手动操作的16倍。
7. 借助AI与机器学习组合优化可生物降解农药的正确混合比例并仅在必要时使用,进而降低运营成本并提高单位田地产量。
- text|《2021大数据产业年度创新技术突破》榜重磅发布丨金猿奖
- DeepMind首席科学家:比起机器智能,我更担心人类智能造成的灾难
- 将理论注入深度学习,对过渡金属表面进行可解释的化学反应性预测
- 信息科学技术学院|瞧不起中国芯?芯片女神出手,30岁斩获国际大奖,让美国哑口无言
- 元宇宙持续发酵,或迎“终极形态”?马斯克为何力挺脑机接口技术
- 自动驾驶|华为首秀自动驾驶,王兴:特斯拉遇到技术与忽悠能力相当的对手了
- 上海微系统与信息技术研究所|地震救人新突破!中科院研制出触嗅一体智能仿生机械手
- 白白胖胖头顶起雾走走停停安全无误在哈尔滨站候车厅内一边消毒一边在室内移动的智能消毒机器人...|火车站里的机器人服务,是什么体验?
- 机器人|售价10万的日本“妻子”机器人,除了生娃啥都能做?太天真了
- 军工|中国版“英伟达”诞生,核心技术完全自研,国产替代即将崛起