拓展你的视野!UCLEMNLP 2021Or ucla( 二 )


拓展你的视野!UCLEMNLP 2021Or ucla
文章插图
(GD-VCR总体统计数据)
GD-VCR 的总体统计数据见表。这边想强调的是,我们计算了每个区域的 OOV 率,也就是出现在 GD-VCR 中但未出现在原始 VCR 训练集中的单词的比率。我们发现在 GD-VCR 中,这四个不同地区 OOV 率彼此接近,并且都很低。这进一步证明 GD-VCR 与原始VCR数据集的词汇分布相似,GD-VCR 的难度并非来自词汇差距。我们还在文中展示了 GD-VCR 中覆盖图像关键字分布。我们统计出总共有693个关键词,展示了 GD-VCR 中场景的多样性。

4

实验设置和分析
我们基于两个预训练V&L模型进行实验:VisualBERT (Li et al., 2019), ViLBERT (Lu et al., 2019)。
拓展你的视野!UCLEMNLP 2021Or ucla
文章插图
(模型效果)
我们首先研究在 VCR 上训练的模型泛化到特定地区常识问题上的效果。首先,我们发现与西方图像相比,这两个模型在来自非西方地区的图像上的表现要差得多,差距大约为3-19%。此外,我们比较了模型和人类的表现。我们注意到,尽管人类可能不熟悉这种文化,但他们仍然比模型高出 30% 左右。这意味着人类更有能力将他们的常识转化并应用在地区多样化常识的理解过程中。然而目前的模型离这个水平还差很远。
我们后面从两个方面分析了产生这种表现差异的原因:
  1. 具有地区特征的场景:我们在 GD-VCR 中标注了图像的场景标签,所以我们可以借助标签将不同地区同一个场景的图片放在一起进行比较。我们观察到,对于经常涉及地区特征的场景(例如婚礼,节日等),性能差距要大得多,约为8%-24%。但是,对于一些世界上普遍存在且比较相似的场景,模型的性能差距仅为0.4-1.3%。
拓展你的视野!UCLEMNLP 2021Or ucla
文章插图

(具有地区特征的场景与其他场景上模型表现差异对比。字体越大表示模型表现差异越大。红色场景差异大于8%,蓝色场景差异小于8%。)
  1. QA pair 的推理层次:在介绍推理层次之前,我们可以先思考模型什么时候会失败。我们认为可能有2种情景。“情景1”是,模型在早期甚至无法识别非西方图像的基本信息。“情景2”是,模型在基本视觉信息的识别上效果不错,但最终由于缺乏特定区域的常识而最终失败。
为了判断我们处于哪种情景,我们此外又注释了一些 low-order QA pairs。这些 low-order QA pairs 可以通过识别基本的视觉信息即可回答。例如,问题“[person3] 穿的什么?”就是一个 low-order QA pair。并且我们假设 GD-VCR 中的所有 QA pairs 都是 high-order QA pairs,因为它们涉及常识和更复杂的推理。low-order 和 high-order 分别对应低推理层次和高推理层次。
拓展你的视野!UCLEMNLP 2021Or ucla
文章插图
(在low-order和high-order QA pairs上不同地区图片的模型表现差异)
我们用 VisualBERT 在这些 QA pairs 上评估。我们首先注意到模型在 low-order QA pairs 的效果好于 high-order QA pairs。此外,模型在不同地区 low-order QA pairs 的差异远小于 high-order QA pairs。这意味着该模型在基本视觉信息的问题上可以达到相似的性能,但是复杂常识推理增加了难度并扩大了差距。这意味着“情景2”更好地描述了这个状况。

5